Advertisement

A Class of Automata for the Verification of Infinite, Resource-Allocating Behaviours

  • Vincenzo CianciaEmail author
  • Matteo SammartinoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8902)

Abstract

Process calculi for service-oriented computing often feature generation of fresh resources. So-called nominal automata have been studied both as semantic models for such calculi, and as acceptors of languages of finite words over infinite alphabets. In this paper we investigate nominal automata that accept infinite words. These automata are a generalisation of deterministic Muller automata to the setting of nominal sets. We prove decidability of complement, union, intersection, emptiness and equivalence, and determinacy by ultimately periodic words. The key to obtain such results is to use finite representations of the (otherwise infinite-state) defined class of automata. The definition of such operations enables model checking of process calculi featuring infinite behaviours, and resource allocation, to be implemented using classical automata-theoretic methods.

Keywords

Model Check Data Word Process Calculus Canonical Representative Periodic Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ciancia, V., Sammartino, M.: A class of automata for the verification of infinite, resource-allocating behaviours - extended version. CoRR abs/1310.3945 (2014)Google Scholar
  2. 2.
    Clarke, E.M., Schlingloff, B.H.: Model checking. In: Handbook of Automated Reasoning, pp. 1635–1790. Elsevier (2001)Google Scholar
  3. 3.
    Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik Grundl. Math. 6, 66–92 (1960)CrossRefzbMATHGoogle Scholar
  4. 4.
    Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Amer. Math. Soc. 98, 21–51 (1961)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. I/II. Inf. Comput. 100(1), 1–77 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Fiore, M.P., Turi, D.: Semantics of name and value passing. In: LICS 2001, pp. 93–104. IEEE Computer Society (2001)Google Scholar
  7. 7.
    Bonchi, F., Buscemi, M.G., Ciancia, V., Gadducci, F.: A presheaf environment for the explicit fusion calculus. J. Autom. Reasoning 49(2), 161–183 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Miculan, M.: A categorical model of the fusion calculus. Electr. Not. Theor. Comp. Sci. 218, 275–293 (2008)CrossRefGoogle Scholar
  9. 9.
    Ghani, N., Yemane, K., Victor, B.: Relationally staged computations in calculi of mobile processes. Electr. Not. Theor. Comp. Sci. 106, 105–120 (2004)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Montanari, U., Sammartino, M.: A network-conscious \(\pi \)-calculus and its coalgebraic semantics. Theor. Comput. Sci. 546, 188–224 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Montanari, U., Pistore, M.: Structured coalgebras and minimal hd-automata for the \(\pi \)-calculus. Theor. Comput. Sci. 340(3), 539–576 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Bojanczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: LICS 2011, pp. 355–364. IEEE Computer Society (2011)Google Scholar
  13. 13.
    Gadducci, F., Miculan, M., Montanari, U.: About permutation algebras, (pre)sheaves and named sets. Higher-Ord. Symb. Comp. 19(2–3), 283–304 (2006)CrossRefzbMATHGoogle Scholar
  14. 14.
    Fiore, M.P., Staton, S.: Comparing operational models of name-passing process calculi. Inf. Comput. 204(4), 524–560 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Ciancia, V., Kurz, A., Montanari, U.: Families of symmetries as efficient models of resource binding. Electr. Not. Theor. Comp. Sci. 264(2), 63–81 (2010)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Ciancia, V., Montanari, U.: Symmetries, local names and dynamic (de)-allocation of names. Inf. Comput. 208(12), 1349–1367 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Tzevelekos, N.: Fresh-register automata. In: POPL 2011, pp. 295–306. ACM (2011)Google Scholar
  18. 18.
    Kurz, A., Suzuki, T., Tuosto, E.: On nominal regular languages with binders. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 255–269. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Gabbay, M.J., Ciancia, V.: Freshness and name-restriction in sets of traces with names. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 365–380. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput. 118(2), 316–326 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Farzan, A., Chen, Y.-F., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Extending automated compositional verification to the full class of omega-regular languages. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 2–17. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Ciancia, V., Venema, Y.: Stream automata are coalgebras. In: Pattinson, D., Schröder, L. (eds.) CMCS 2012. LNCS, vol. 7399, pp. 90–108. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Gabbay, M., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Asp. Comput. 13(3–5), 341–363 (2002)CrossRefzbMATHGoogle Scholar
  24. 24.
    Pistore, M.: History Dependent Automata. PhD thesis, University of Pisa (1999)Google Scholar
  25. 25.
    Calbrix, H., Nivat, M., Podelski, A.: Ultimately periodic words of rational w-languages. In: Main, M.G., Melton, A.C., Mislove, M.W., Schmidt, D., Brookes, S.D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 554–556. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  26. 26.
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: 1960 International Congress on Logic, Methodology and Philosophy of Science, pp. 1–11. Stanford University Press (1962)Google Scholar
  27. 27.
    Bengtson, J., Johansson, M., Parrow, J., Victor, B.: Psi-calculi: a framework for mobile processes with nominal data and logic. LMCS 7(1) (2011)Google Scholar
  28. 28.
    Bojańczyk, M.: Modelling infinite structures with atoms. In: Libkin, L., Kohlenbach, U., de Queiroz, R. (eds.) WoLLIC 2013. LNCS, vol. 8071, pp. 13–28. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  29. 29.
    Väänänen, J.A.: Dependence Logic - A New Approach to Independence Friendly Logic. London Mathematical Society student texts, vol. 70. Cambridge University Press (2007)Google Scholar
  30. 30.
    Galliani, P.: The Dynamics of Imperfect Information. PhD thesis, University of Amsterdam (September 2012)Google Scholar
  31. 31.
    Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. ACM Trans. Comput. Log. 10(3) (2009)Google Scholar
  32. 32.
    Lazic, R.: Safety alternating automata on data words. ACM Trans. Comput. Log. 12(2), 10 (2011)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data words. ACM Trans. Comput. Log. 12(4), 27 (2011)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Kara, A., Schwentick, T., Tan, T.: Feasible automata for two-variable logic with successor on data words. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 351–362. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  35. 35.
    Bollig, B.: An automaton over data words that captures emso logic. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 171–186. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  36. 36.
    Kara, A., Tan, T.: Extending Büchi automata with constraints on data values. CoRR abs/1012.5439 (2010)Google Scholar
  37. 37.
    Grumberg, O., Kupferman, O., Sheinvald, S.: Variable automata over infinite alphabets. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 561–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.ISTI-CNRPisaItaly
  2. 2.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations