Büchi Automata Optimisations Formalised in Isabelle/HOL

  • Alexander Schimpf
  • Jan-Georg Smaus
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8923)

Abstract

In applications of automata theory, one is interested in reductions in the size of automata that preserve the recognised language. For Büchi automata, two optimisations have been proposed: bisimulation reduction, which computes equivalence classes of states and collapses them, and α-balls reduction, which collapses strongly connected components (SCCs) of an automaton that only contain one single letter as edge label. In this paper, we present a formalisation of these algorithms in Isabelle/HOL, providing a formally verified implementation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking, 5th print. MIT Press (2002)Google Scholar
  2. 2.
    Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.: A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–167. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Dembinski, P., Sredniawa, M. (eds.) Proceedings of the 15th International Symposium on Protocol Specification, Testing, and Verification. IFIP Conference Proceedings, vol. 38, pp. 3–18. Chapman and Hall (1996)Google Scholar
  5. 5.
    Holzmann, G.J.: The SPIN Model Checker - primer and reference manual. Addison-Wesley (2004)Google Scholar
  6. 6.
    Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to Hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 166–182. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)MATHGoogle Scholar
  8. 8.
    Schimpf, A., Merz, S., Smaus, J.-G.: Construction of Büchi automata for LTL model checking verified in Isabelle/HOL. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 424–439. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics (B), pp. 133–192. Elsevier and MIT Press (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alexander Schimpf
    • 1
  • Jan-Georg Smaus
    • 2
  1. 1.Institut für InformatikUniversität FreiburgGermany
  2. 2.IRITUniversité de ToulouseFrance

Personalised recommendations