Advertisement

Untangling Hairballs

From 3 to 14 Degrees of Separation
  • Arlind Nocaj
  • Mark Ortmann
  • Ulrik Brandes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)

Abstract

Small-world graphs have characteristically low average distance and thus cause force-directed methods to generate drawings that look like hairballs. This is by design as the inherent objective of these methods is a globally uniform edge length or, more generally, accurate distance representation. The problem arises in graphs of high density or high conductance, and in the presence of high-degree vertices, all of which tend to pull vertices together and thus clutter variation in local density.

We here propose a method to draw online social networks, a special class of hairball graphs. The method is based on a spanning subgraph that is sparse but connected and consists of strong ties holding together communities. To identify these ties we propose a novel measure of embeddedness. It is based on a weighted accumulation of triangles in quadrangles and can be determined efficiently. An evaluation on empirical and generated networks indicates that our approach improves upon previous methods using other edge indices. Although primarily designed to achieve more informative drawings, our spanning subgraph may also serve as a sparsifier that trims a hairball graph before the application of a clustering algorithm.

Keywords

Online Social Network Small World Span Subgraph Graph Drawing Layout Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Auber, D., Chiricota, Y., Jourdan, F., Melançon, G.: Multiscale visualization of small world networks. In: INFOVIS. IEEE Computer Society (2003)Google Scholar
  2. 2.
    Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts in õ(n 2) time. In: Miller, G.L. (ed.) STOC, pp. 47–55. ACM (1996)Google Scholar
  3. 3.
    Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 42–53. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Brandes, U., Pich, C.: An experimental study on distance-based graph drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 218–229. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Burt, R.S.: Structural holes versus network closure as social capital. Social Capital: Theory and Research, pp. 31–56 (2001)Google Scholar
  6. 6.
    Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Cohen, J.D.: Drawing graphs to convey proximity: An incremental arrangement method. ACM Trans. Comput.-Hum. Interact. 4(3), 197–229 (1997)CrossRefGoogle Scholar
  8. 8.
    Eppstein, D., Spiro, E.S.: The h-index of a graph and its application to dynamic subgraph statistics. J. Graph Algorithms Appl. 16(2), 543–567 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Gansner, E.R., Koren, Y., North, S.C.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. Comput. Graph. Forum 28(3), 983–990 (2009)CrossRefGoogle Scholar
  11. 11.
    Hurter, C., Telea, A., Ersoy, O.: Moleview: An attribute and structure-based semantic lens for large element-based plots. IEEE TVCG 17(12), 2600–2609 (2011)Google Scholar
  12. 12.
    Jankun-Kelly, T.J., Dwyer, T., Holten, D., Hurter, C., Nöllenburg, M., Weaver, C., Xu, K.: Scalability considerations for multivariate graph visualization. In: Kerren, A., Purchase, H.C., Ward, M.O. (eds.) Multivariate Network Visualization 2013. LNCS, vol. 8380, pp. 208–236. Springer, Heidelberg (2013)Google Scholar
  13. 13.
    Kobourov, S.G.: Force-directed drawing algorithms. In: Tamassia, R. (ed.) Handbk. of Graph Drawing and Visualization, pp. 383–408. Chapman & Hall/CRC (2013)Google Scholar
  14. 14.
    Mantegna, R.N.: Hierarchical structure in financial markets. The European Physical Journal B-Condensed Matter and Complex Systems 11(1), 193–197 (1999)CrossRefGoogle Scholar
  15. 15.
    McSherry, F.: Spectral partitioning of random graphs. In: FOCS, pp. 529–537. IEEE Computer Society (2001)Google Scholar
  16. 16.
    Melançon, G., Sallaberry, A.: Edge metrics for visual graph analytics: A comparative study. In: IV, pp. 610–615. IEEE Computer Society (2008)Google Scholar
  17. 17.
    Nick, B., Lee, C., Cunningham, P., Brandes, U.: Simmelian backbones: amplifying hidden homophily in facebook networks. In: Rokne, J.G., Faloutsos, C. (eds.) ASONAM, pp. 525–532. ACM (2013)Google Scholar
  18. 18.
    Pfaltz, J.L.: The irreducible spine(s) of undirected networks. In: Lin, X., Manolopoulos, Y., Srivastava, D., Huang, G. (eds.) WISE 2013, Part II. LNCS, vol. 8181, pp. 104–117. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. 101(9), 2658–2663 (2004)CrossRefGoogle Scholar
  20. 20.
    Satuluri, V., Parthasarathy, S., Ruan, Y.: Local graph sparsification for scalable clustering. In: Sellis, T.K., Miller, R.J., Kementsietsidis, A., Velegrakis, Y. (eds.) SIGMOD Conference, pp. 721–732. ACM (2011)Google Scholar
  21. 21.
    Schnettler, S.: A structured overview of 50 years of small-world research. Social Networks 31(3), 165–178 (2009)CrossRefGoogle Scholar
  22. 22.
    Simmel, G.: The sociology of Georg Simmel, vol. 92892. Simon and Schuster (1950)Google Scholar
  23. 23.
    Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. SIAM J. Comput. 40(6), 1913–1926 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Babai, L. (ed.) STOC, pp. 81–90. ACM (2004)Google Scholar
  25. 25.
    Subramanian, A., Wei, S.J.: The WTO promotes trade, strongly but unevenly. Journal of International Economics 72(1), 151–175 (2007)CrossRefGoogle Scholar
  26. 26.
    Traud, A.L., Kelsic, E.D., Mucha, P.J., Porter, M.A.: Comparing community structure to characteristics in online collegiate social networks. SIAM Review 53(3), 526–543 (2011)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Tumminello, M., Aste, T., Di Matteo, T., Mantegna, R.: A tool for filtering information in complex systems. Proc. Natl. Acad. Sci. 102(30), 10421–10426 (2005)CrossRefGoogle Scholar
  28. 28.
    Van Ham, F., Wattenberg, M.: Centrality based visualization of small world graphs. Computer Graphics Forum 27(3), 975–982 (2008)CrossRefGoogle Scholar
  29. 29.
    Zaidi, F., Sallaberry, A., Melançon, G.: Revealing hidden community structures and identifying bridges in complex networks: An application to analyzing contents of web pages for browsing. In: Web Intelligence, pp. 198–205. IEEE (2009)Google Scholar
  30. 30.
    Zhou, F., Mahler, S., Toivonen, H.: Network simplification with minimal loss of connectivity. In: Webb, G.I., Liu, B., Zhang, C., Gunopulos, D., Wu, X. (eds.) ICDM, pp. 659–668. IEEE Computer Society (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Arlind Nocaj
    • 1
  • Mark Ortmann
    • 1
  • Ulrik Brandes
    • 1
  1. 1.Computer & Information ScienceUniversity of KonstanzGermany

Personalised recommendations