Increasing-Chord Graphs On Point Sets

  • Hooman Reisi Dehkordi
  • Fabrizio Frati
  • Joachim Gudmundsson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)

Abstract

We tackle the problem of constructing increasing-chord graphs spanning point sets. We prove that, for every point set P with n points, there exists an increasing-chord planar graph with O(n) Steiner points spanning P. Further, we prove that, for every convex point set P with n points, there exists an increasing-chord graph with O(n logn) edges (and with no Steiner points) spanning P.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aichholzer, O., Aurenhammer, F., Icking, C., Klein, R., Langetepe, E., Rote, G.: Generalized self-approaching curves. Discr. Appl. Math. 109(1-2), 3–24 (2001)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Alamdari, S., Chan, T.M., Grant, E., Lubiw, A., Pathak, V.: Self-approaching graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 260–271. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Bern, M.W., Eppstein, D., Gilbert, J.R.: Provably good mesh generation. J. Comput. Syst. Sci. 48(3), 384–409 (1994)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Di Battista, G., Vismara, L.: Angles of planar triangular graphs. SIAM J. Discrete Math. 9(3), 349–359 (1996)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Dillencourt, M.B., Smith, W.D.: Graph-theoretical conditions for inscribability and Delaunay realizability. Discrete Mathematics 161(1-3), 63–77 (1996)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Eades, P., Whitesides, S.: The realization problem for Euclidean minimum spanning trees is NP-hard. Algorithmica 16(1), 60–82 (1996)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Systematic Biology 18, 259–278 (1969)Google Scholar
  9. 9.
    Icking, C., Klein, R., Langetepe, E.: Self-approaching curves. Math. Proc. Camb. Phil. Soc. 125(3), 441–453 (1999)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Liotta, G.: Chapter 4 of Handbook of Graph Drawing. CRC Press (2014); Tamassia, R. (ed.)Google Scholar
  11. 11.
    Matula, D.W., Sokal, R.R.: Properties of Gabriel graphs relevant to geographic variation research and clustering of points in the plane. Geographical Analysis 12(3), 205–222 (1980)CrossRefGoogle Scholar
  12. 12.
    Monma, C.L., Suri, S.: Transitions in geometric minimum spanning trees. Discrete & Computational Geometry 8, 265–293 (1992)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theoretical Computer Science 344(1), 3–14 (2005)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Rao, A., Papadimitriou, C.H., Shenker, S., Stoica, I.: Geographic routing without location information. In: Johnson, D., Joseph, A., Vaidya, N. (eds.) MOBICOM 2003, pp. 96–108 (2003)Google Scholar
  15. 15.
    Rote, G.: Curves with increasing chords. Math. Proc. Camb. Phil. Soc. 115(1), 1–12 (1994)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hooman Reisi Dehkordi
    • 1
  • Fabrizio Frati
    • 2
  • Joachim Gudmundsson
    • 2
  1. 1.School of Information TechnologiesMonash UniversityAustralia
  2. 2.School of Information TechnologiesThe University of SydneyAustralia

Personalised recommendations