Clustered Planarity Testing Revisited

  • Radoslav Fulek
  • Jan Kynčl
  • Igor Malinović
  • Dömötör Pálvölgyi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)


The Hanani–Tutte theorem is a classical result proved for the first time in the 1930s that characterizes planar graphs as graphs that admit a drawing in the plane in which every pair of edges not sharing a vertex cross an even number of times. We generalize this classical result to clustered graphs with two disjoint clusters, and show that a straightforward extension of our result to flat clustered graphs with three or more disjoint clusters is not possible.

We also give a new and short proof for a related result by Di Battista and Frati based on the matroid intersection algorithm.


Polynomial Time Planar Graph Planarity Test Outer Face Independent Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F.: Strip planarity testing. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 37–48. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Biedl, T.C.: Drawing planar partitions III: Two constrained embedding problems. Technical report, RUTCOR, Rutgers University (1998)Google Scholar
  3. 3.
    Cairns, G., Nikolayevsky, Y.: Bounds for generalized thrackles. Discrete Comput. Geom. 23(2), 191–206 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Chimani, M., Zeranski, R.: Upward planarity testing: A computational study. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 13–24. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Cortese, P.F., Di Battista, G.: Clustered planarity (invited lecture). In: Twenty-First Annual Symposium on Computational Geometry (Proc. SoCG 2005), pp. 30–32. ACM (2005)Google Scholar
  6. 6.
    Cortese, P.F., Di Battista, G., Frati, F., Patrignani, M., Pizzonia, M.: C-planarity of c-connected clustered graphs. J. Graph Algorithms Appl. 12(2), 225–262 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering cycles into cycles of clusters. J. Graph Algorithms Appl. 9(3), 391–413 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Cunningham, W.H.: Improved bounds for matroid partition and intersection algorithms. SIAM Journal on Computing 15(4), 948–957 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: Trémaux trees and planarity. International Journal of Foundations of Computer Science 17(05), 1017–1029 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    de Fraysseix, H., Rosenstiehl, P.: A characterization of planar graphs by Trémaux orders. Combinatorica 5(2), 127–135 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Di Battista, G., Frati, F.: Efficient c-planarity testing for embedded flat clustered graphs with small faces. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 291–302. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 11–26. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Feng, Q.-W., Cohen, R.F., Eades, P.: How to draw a planar clustered graph. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 21–30. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  14. 14.
    Feng, Q.W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  15. 15.
    Fulek, R.: Towards Hanani–Tutte theorem for clustered graphs. In: 40th International Workshop on Graph-Theoretic Concepts in Computer Science (accepted)Google Scholar
  16. 16.
    Fulek, R., Kynčl, J., Malinović, I., Pálvölgyi, D.: Efficient c-planarity testing algebraically. arXiv:1305.4519Google Scholar
  17. 17.
    Fulek, R., Pelsmajer, M., Schaefer, M., Štefankovič, D.: Hanani-Tutte, monotone drawings and level-planarity. In: Pach, J. (ed.) Thirty Essays in Geometric Graph Theory, pp. 263–288 (2012)Google Scholar
  18. 18.
    Gall, F.L.: Powers of tensors and fast matrix multiplication. CoRR abs/1401.7714 (2014)Google Scholar
  19. 19.
    Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Advances in c-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 220–236. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Gutwenger, C., Mutzel, P., Schaefer, M.: Practical experience with Hanani-Tutte for testing c-planarity. In: 2014 Proceedings of the Sixteenth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 86–97 (2014)Google Scholar
  21. 21.
    Hanani, H.: Über wesentlich unplättbare Kurven im drei-dimensionalen Raume. Fundamenta Mathematicae 23, 135–142 (1934)Google Scholar
  22. 22.
    Hong, S., Nagamochi, H.: Two-page book embedding and clustered graph planarity. Technical report, Dept. of Applied Mathematics and Physics, University of Kyoto (2009)Google Scholar
  23. 23.
    Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Ibarra, O.H., Moran, S., Hui, R.: A generalization of the fast LUP matrix decomposition algorithm and applications. J. Algorithms 3(1), 45–56 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Katz, B., Rutter, I., Woeginger, G.: An algorithmic study of switch graphs. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 226–237. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Kuratowski, K.: Sur le problème des courbes gauches en topologie. Fund. Math. 15, 271–283 (1930)zbMATHGoogle Scholar
  27. 27.
    Lawler, E.L.: Matroid intersection algorithms. Mathematical Programming 9, 31–56 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Lengauer, T.: Hierarchical planarity testing algorithms. J. ACM 36(3), 474–509 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Oxley, J.: Matroid Theory. Oxford University Press (2011)Google Scholar
  30. 30.
    Pach, J., Tóth, G.: Which crossing number is it anyway? J. Combin. Theory Ser. B 80(2), 225–246 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theory 46(1), 39–47 (2004), updated version: arXiv:1101.0967CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Pelsmajer, M.J., Schaefer, M., Stasi, D.: Strong Hanani–Tutte on the projective plane. SIAM Journal on Discrete Mathematics 23(3), 1317–1323 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings. J. Combin. Theory Ser. B 97(4), 489–500 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings on surfaces. European Journal of Combinatorics 30(7), 1704–1717 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Schaefer, M.: Hanani-Tutte and related results. To appear in Bolyai Memorial VolumeGoogle Scholar
  36. 36.
    Schaefer, M.: Toward a theory of planarity: Hanani-tutte and planarity variants. J. Graph Algorithms Appl. 17(4), 367–440 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Tutte, W.T.: Toward a theory of crossing numbers. J. Combin. Theory 8, 45–53 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Whitney, H.: Non-separable and planar graphs. Trans. Amer. Math. Soc. 34, 339–362 (1932)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC 2012, pp. 887–898 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Radoslav Fulek
    • 1
    • 4
  • Jan Kynčl
    • 1
  • Igor Malinović
    • 2
  • Dömötör Pálvölgyi
    • 3
  1. 1.Department of Applied Mathematics and Institute for Theoretical Computer Science,Faculty of Mathematics and PhysicsCharles UniversityPraha 1Czech Republic
  2. 2.Faculté Informatique et CommunicationsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  3. 3.Institute of MathematicsEötvös UniversityBudapestHungary
  4. 4.Department of Industrial Engineering and Operations ResearchColumbia UniversityNew York CityUSA

Personalised recommendations