Embedding Four-Directional Paths on Convex Point Sets

  • Oswin Aichholzer
  • Thomas Hackl
  • Sarah Lutteropp
  • Tamara Mchedlidze
  • Birgit Vogtenhuber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)

Abstract

A directed path whose edges are assigned labels “up”, “down”, “right”, or “left” is called four-directional, and three-directional if at most three out of the four labels are used. A direction-consistent embedding of an n-vertex four-directional path P on a set S of n points in the plane is a straight-line drawing of P where each vertex of P is mapped to a distinct point of S and every edge points to the direction specified by its label. We study planar direction-consistent embeddings of three- and four-directional paths and provide a complete picture of the problem for convex point sets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aichholzer, O., Hackl, T., Lutteropp, S., Mchedlidze, T., Vogtenhuber, B.: Embedding four-directional paths on convex point sets. arXiv e-prints arXiv:1408.4933 [cs.CG] (2014)Google Scholar
  2. 2.
    Aichholzer, O., Krasser, H.: The point set order type data base: A collection of applications and results. In: 13th Annual Canadian Conference on Computational Geometry (CCCG 2001), pp. 17–20 (2001)Google Scholar
  3. 3.
    Aichholzer, O., Hackl, T., Huemer, C., Hurtado, F., Krasser, H., Vogtenhuber, B.: On the number of plane geometric graphs. Graphs and Comb. 23(1), 67–84 (2007)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Alspach, B., Rosenfeld, M.: Realization of certain generalized paths in tournaments. Discrete Math 34, 199–202 (1981)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Angelini, P., Frati, F., Geyer, M., Kaufmann, M., Mchedlidze, T., Symvonis, A.: Upward geometric graph embeddings into point sets. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 25–37. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Bannister, M.J., Cheng, Z., Devanny, W.E., Eppstein, D.: Superpatterns and universal point sets. J. Graph Alg. Appl. 18(2), 177–209 (2014)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bannister, M.J., Devanny, W.E., Eppstein, D.: Small superpatterns for dominance drawing. CoRR abs/1310.3770 (2013)Google Scholar
  8. 8.
    Biedl, T., Vatshelle, M.: The point-set embeddability problem for plane graphs. In: 28th Annual Symposium on Computational Geometry (SoCG 2012), pp. 41–50. ACM (2012)Google Scholar
  9. 9.
    Binucci, C., Di Giacomo, E., Didimo, W., Estrella-Balderrama, A., Frati, F., Kobourov, S., Liotta, G.: Upward straight-line embeddings of directed graphs into point sets. Computat. Geom. Th. Appl. 43, 219–232 (2010)CrossRefMATHGoogle Scholar
  10. 10.
    Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Alg. Appl. 10(2), 353–366 (2006)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Durocher, S., Mondal, D.: On the hardness of point-set embeddability. In: Rahman, M.S., Nakano, S.-I. (eds.) WALCOM 2012. LNCS, vol. 7157, pp. 148–159. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Forcade, R.: Parity of paths and circuits in tournaments. Discrete Math. 6(2), 115 (1973)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points. The American Math. Monthly 98(2), 165–166 (1991)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kaufmann, M., Mchedlidze, T., Symvonis, A.: On upward point set embeddability. Comput. Geom. 46(6), 774–804 (2013)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Mchedlidze, T.: Upward planar embedding of an n-vertex oriented path on O(n2) points. Comp. Geom.: Theory and Appl. 47(3), 493–498 (2014)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Reid, K., Wormald, N.: Embedding oriented n-trees in tournaments. Studia Sci. Math. Hungarica 18, 377–387 (1983)MATHMathSciNetGoogle Scholar
  17. 17.
    Rosenfeld, M.: Antidirected hamiltonian circuits in tournaments. Journal of Comb. Theory, Ser. B 16(3), 234–242 (1974)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Straight, J.: The existence of certain type of semi-walks in tournaments. Congr. Numer. 29, 901–908 (1980)MathSciNetGoogle Scholar
  19. 19.
    Thomason, A.: Paths and cycles in tournaments. Trans. of the American Math. Society 296(1), 167–180 (1986)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Zhang, C.Q.: Some results on tournaments. J. Qufu Teachers College (1), 51–53 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Oswin Aichholzer
    • 1
  • Thomas Hackl
    • 1
  • Sarah Lutteropp
    • 2
  • Tamara Mchedlidze
    • 2
  • Birgit Vogtenhuber
    • 1
  1. 1.Institute for Software TechnologyGraz University of TechnologyAustria
  2. 2.Institute of Theoretical InformaticsKarlsruhe Institute of TechnologyGermany

Personalised recommendations