Drawing Partially Embedded and Simultaneously Planar Graphs

  • Timothy M. Chan
  • Fabrizio Frati
  • Carsten Gutwenger
  • Anna Lubiw
  • Petra Mutzel
  • Marcus Schaefer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)

Abstract

We investigate the problem of constructing planar drawings with few bends for two related problems, the partially embedded graph (PEG) problem—to extend a straight-line planar drawing of a subgraph to a planar drawing of the whole graph—and the simultaneous planarity (SEFE) problem—to find planar drawings of two graphs that coincide on shared vertices and edges. In both cases we show that if the required planar drawings exist, then there are planar drawings with a linear number of bends per edge and, in the case of simultaneous planarity, a constant number of crossings between every pair of edges. Our proofs provide efficient algorithms if the combinatorial embedding information about the drawing is given. Our result on partially embedded graph drawing generalizes a classic result of Pach and Wenger showing that any planar graph can be drawn with fixed locations for its vertices and with a linear number of bends per edge.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. In: Proc. Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 202–221. SIAM (2010)Google Scholar
  2. 2.
    Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points. Theor. Comput. Sci. 408(2-3), 129–142 (2008)CrossRefMATHGoogle Scholar
  3. 3.
    Bern, M., Gilbert, J.R.: Drawing the planar dual. Inform. Process. Lett. 43(1), 7–13 (1992)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embeddings of planar graphs. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. Discrete Mathematics and Its Applications, ch. 11, pp. 349–382. Chapman and Hall/CRC (2013)Google Scholar
  5. 5.
    Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM Journal on Computing 42(5), 1803–1829 (2013)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Chan, T.M., Hoffmann, H.-F., Kiazyk, S., Lubiw, A.: Minimum length embedding of planar graphs at fixed vertex locations. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 376–387. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Chimani, M., Jünger, M., Schulz, M.: Crossing minimization meets simultaneous drawing. In: PacificVis, pp. 33–40. IEEE (2008)Google Scholar
  8. 8.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. J. Graph Algorithms and Appl. 9(3), 347–364 (2005)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous geometric graph embeddings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 280–290. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Fowler, J.J., Jünger, M., Kobourov, S.G., Schulz, M.: Characterizations of restricted pairs of planar graphs allowing simultaneous embedding with fixed edges. Comput. Geom. 44(8), 385–398 (2011)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous graph embeddings with fixed edges. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 325–335. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Grilli, L., Hong, S.-H., Kratochvíl, J., Rutter, I.: Drawing simultaneously embedded graphs with few bends. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 40–51. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Haeupler, B., Jampani, K.R., Lubiw, A.: Testing simultaneous planarity when the common graph is 2-connected. J. Graph Algorithms and Appl. 17(3), 147–171 (2013)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Hliněný, P.: Crossing number is hard for cubic graphs. J. Combin. Theory Ser. B 96(4), 455–471 (2006)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Jelínek, V., Kratochvíl, J., Rutter, I.: A Kuratowski-type theorem for planarity of partially embedded graphs. Comput. Geom. 46(4), 466–492 (2013)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Jünger, M., Schulz, M.: Intersection graphs in simultaneous embedding with fixed edges. J. Graph Algorithms Appl. 13(2), 205–218 (2009)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. J. Graph Algorithms and Appl. 6(1), 115–129 (2002)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Kratochvíl, J., Matoušek, J.: String graphs requiring exponential representations. J. Comb. Theory, Ser. B 53(1), 1–4 (1991)CrossRefMATHGoogle Scholar
  19. 19.
    O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press, NY (1987)MATHGoogle Scholar
  20. 20.
    Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs Combin. 17(4), 717–728 (2001)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Patrignani, M.: On extending a partial straight-line drawing. Internat. J. Found. Comput. Sci. 17(5), 1061–1069 (2006)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Schaefer, M.: The graph crossing number and its variants: A survey. The Electronic Journal of Combinatorics 20, 1–90 (2013), Dynamic Survey, #DS21.MathSciNetGoogle Scholar
  23. 23.
    Schaefer, M.: Toward a theory of planarity: Hanani-Tutte and planarity variants. J. of Graph Algorthims and Appl. 17(4), 367–440 (2013)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Timothy M. Chan
    • 1
  • Fabrizio Frati
    • 2
  • Carsten Gutwenger
    • 3
  • Anna Lubiw
    • 1
  • Petra Mutzel
    • 3
  • Marcus Schaefer
    • 4
  1. 1.Cheriton School of Computer ScienceUniversity of WaterlooCanada
  2. 2.School of Information TechnologiesThe University of SydneyAustralia
  3. 3.Technische Universität DortmundDortmundGermany
  4. 4.DePaul UniversityChicagoUSA

Personalised recommendations