Trade-Offs in Planar Polyline Drawings

  • Stephane Durocher
  • Debajyoti Mondal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)

Abstract

Angular resolution, area and the number of bends are some important aesthetic criteria of a polyline drawing. Although trade-offs among these criteria have been examined over the past decades, many of these trade-offs are still not known to be optimal. In this paper we give a new technique to compute polyline drawings for planar triangulations. Our algorithm is simple and intuitive, yet implies significant improvement over the known results. We present the first smooth trade-off between the area and angular resolution for 2-bend polyline drawings of any given planar graph. Specifically, for any given n-vertex triangulation, our algorithm computes a drawing with angular resolution r/d(v) at each vertex v, and area f(n,r), for any r ∈ (0,1], where d(v) denotes the degree at v. For r < 0.389 or r > 0.5, f(n,r) is less than the drawing area required by previous algorithms; f(n,r) ranges from 7.12n2 when r ≤ 0.3 to 32.12n2 when r = 1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biedl, T.C., Kaufmann, M.: Area-efficient static and incremental graph drawings. In: Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 37–52. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected plane graphs. Algorithmica 47(4), 399–420 (2007)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bonichon, N., Le Saëc, B., Mosbah, M.: Wagner’s theorem on realizers. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 1043–1053. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Brandenburg, F.J.: Drawing planar graphs on \(\frac{8}{9}n^2\) area. Electronic Notes in Discrete Mathematics 31, 37–40 (2008)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Cheng, C.C., Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Drawing planar graphs with circular arcs. Discrete & Computational Geometry 25(3), 405–418 (2001)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Chrobak, M., Payne, T.: A linear-time algorithm for drawing planar graphs. Information Processing Letters 54, 241–246 (1995)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    CircuitLogix, https://www.circuitlogix.com/ (accessed June 03, 2014)
  8. 8.
    ConceptDraw: http://www.conceptdraw.com/ (accessed June 03, 2014)
  9. 9.
    De Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Duncan, C.A., Kobourov, S.G.: Polar coordinate drawing of planar graphs with good angular resolution. Journal of Graph Algorithms and Applications 7(4), 311–333 (2003)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Durocher, S., Mondal, D.: On balanced +-contact representations. In: Proceedings of GD. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 143–154. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Goodrich, M.T., Wagner, C.G.: A framework for drawing planar graphs with curves and polylines. Journal of Algorithms 37(2), 399–421 (2000)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Gutwenger, C., Mutzel, P.: Planar polyline drawings with good angular resolution. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Hong, S.H., Mader, M.: Generalizing the shift method for rectangular shaped vertices with visibility constraints. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 278–283. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Kurowski, M.: Planar straight-line drawing in an o(no(n) grid with angular resolution ω(1/n). In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 250–258. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of ACM-SIAM SODA, January 22-24, pp. 138–148. ACM (1990)Google Scholar
  18. 18.
    SmartDraw Software, LLC, http://www.smartdraw.com/ (accessed June 03, 2014)
  19. 19.
    Tamassia, R., Di Battista, G., Batini, C.: Automatic graph drawing and readability of diagrams. IEEE Transactions on Systems, Man and Cybernetics 18(1), 61–79 (1988)CrossRefGoogle Scholar
  20. 20.
    Zhang, H.: Planar polyline drawings via graph transformations. Algorithmica 57(2), 381–397 (2010)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Zhang, H., He, X.: Canonical ordering trees and their applications in graph drawing. Discrete & Computational Geometry 33(2), 321–344 (2005)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stephane Durocher
    • 1
  • Debajyoti Mondal
    • 1
  1. 1.Department of Computer ScienceUniversity of ManitobaCanada

Personalised recommendations