Morphing Schnyder Drawings of Planar Triangulations

  • Fidel Barrera-Cruz
  • Penny Haxell
  • Anna Lubiw
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)


We consider the problem of morphing between two planar drawings of the same triangulated graph, maintaining straight-line planarity. A paper in SODA 2013 gave a morph that consists of O(n 2) steps where each step is a linear morph that moves each of the n vertices in a straight line at uniform speed [1]. However, their method imitates edge contractions so the grid size of the intermediate drawings is not bounded and the morphs are not good for visualization purposes. Using Schnyder embeddings, we are able to morph in O(n 2) linear morphing steps and improve the grid size to O(nO(n) for a significant class of drawings of triangulations, namely the class of weighted Schnyder drawings. The morphs are visually attractive. Our method involves implementing the basic “flip” operations of Schnyder woods as linear morphs.


algorithms computational geometry graph theory 


  1. 1.
    Alamdari, S., Angelini, P., Chan, T.M., Di Battista, G., Frati, F., Lubiw, A., Patrignani, M., Roselli, V., Singla, S., Wilkinson, B.T.: Morphing planar graph drawings with a polynomial number of steps. In: Proc. of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), pp. 1656–1667. SIAM (2013)Google Scholar
  2. 2.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli, V.: Morphing planar graph drawings optimally. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 126–137. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  3. 3.
    Barrera-Cruz, F.: Morphing planar triangulations. Ph.D. thesis, University of Waterloo (2014)Google Scholar
  4. 4.
    Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between theta-graphs, Delaunay triangulations, and orthogonal surfaces. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 266–278. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Brehm, E.: 3-orientations and Schnyder 3-tree-decompositions. Master’s thesis, FB Mathematik und Informatik, Freie Universität Berlin (2000)Google Scholar
  6. 6.
    Cairns, S.S.: Deformations of plane rectilinear complexes. The American Mathematical Monthly 51(5), 247–252 (1944)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Dhandapani, R.: Greedy drawings of triangulations. Discrete & Computational Geometry 43(2), 375–392 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Felsner, S.: Convex drawings of planar graphs and the order dimension of 3-polytopes. Order 18(1), 19–37 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Felsner, S.: Geodesic embeddings and planar graphs. Order 20(2), 135–150 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Felsner, S., Zickfeld, F.: Schnyder woods and orthogonal surfaces. Discrete & Computational Geometry 40(1), 103–126 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Felsner, S.: Lattice structures from planar graphs. The Electronic Journal of Combinatorics 11(1), 15 (2004)MathSciNetGoogle Scholar
  12. 12.
    Felsner, S., Zickfeld, F.: On the number of α-orientations. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 190–201. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Floater, M.S., Gotsman, C.: How to morph tilings injectively. Journal of Computational and Applied Mathematics 101(1), 117–129 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Ossona de Mendez, P.: Orientations bipolaires. Ph.D. thesis, Ecole des Hautes Etudes en Sciences Sociales, Paris (1994)Google Scholar
  15. 15.
    Schnyder, W.: Planar graphs and poset dimension. Order 5, 323–343 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Schnyder, W.: Embedding planar graphs on the grid. In: Proc. of the First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, pp. 138–148. SIAM, Philadelphia (1990)Google Scholar
  17. 17.
    Surazhsky, V., Gotsman, C.: Controllable morphing of compatible planar triangulations. ACM Trans. Graph. 20(4), 203–231 (2001)CrossRefGoogle Scholar
  18. 18.
    Thomassen, C.: Deformations of plane graphs. Journal of Combinatorial Theory, Series B 34(3), 244–257 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 13(3), 743–768 (1963)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Fidel Barrera-Cruz
    • 1
  • Penny Haxell
    • 1
  • Anna Lubiw
    • 1
  1. 1.University of WaterlooWaterlooCanada

Personalised recommendations