Flat Foldings of Plane Graphs with Prescribed Angles and Edge Lengths

  • Zachary Abel
  • Erik D. Demaine
  • Martin L. Demaine
  • David Eppstein
  • Anna Lubiw
  • Ryuhei Uehara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)

Abstract

When can a plane graph with prescribed edge lengths and prescribed angles (from among {0,180°, 360°}) be folded flat to lie in an infinitesimally thick line, without crossings? This problem generalizes the classic theory of single-vertex flat origami with prescribed mountain-valley assignment, which corresponds to the case of a cycle graph. We characterize such flat-foldable plane graphs by two obviously necessary but also sufficient conditions, proving a conjecture made in 2001: the angles at each vertex should sum to 360°, and every face of the graph must itself be flat foldable. This characterization leads to a linear-time algorithm for testing flat foldability of plane graphs with prescribed edge lengths and angles, and a polynomial-time algorithm for counting the number of distinct folded states.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, T.G., Demaine, E.D., Gassend, B.: arXiv:0901.1322 (January 2009), http://arxiv.org/abs/0901.1322
  2. 2.
    Abel, Z., Demaine, E.D., Demaine, M.L., Eisenstat, S., Lynch, J., Schardl, T.B., Shapiro-Ellowitz, I.: Folding equilateral plane graphs. Internat. J. Comput. Geom. Appl. 23(2), 75–92 (2013)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Alt, H., Knauer, C., Rote, G., Whitesides, S.: On the complexity of the linkage reconfiguration problem. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs, Contemp. Math., vol. 342, pp. 1–13. Amer. Math. Soc., Providence (2004)CrossRefGoogle Scholar
  4. 4.
    Arkin, E.M., Bender, M.A., Demaine, E.D., Demaine, M.L., Mitchell, J.S.B., Sethia, S., Skiena, S.S.: When can you fold a map? Comput. Geom. Th. Appl. 29(1), 23–46 (2004)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Ballinger, B., Charlton, D., Demaine, E.D., Demaine, M.L., Iacono, J., Liu, C.-H., Poon, S.-H.: Minimal locked trees. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 61–73. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Bern, M., Hayes, B.: The complexity of flat origami. In: Proc. 7th ACM-SIAM Symposium on Discrete Algorithms (SODA 1996), pp. 175–183 (1996)Google Scholar
  7. 7.
    Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 12(6), 476–497 (1994)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Biedl, T., Demaine, E.D., Demaine, M.L., Lazard, S., Lubiw, A., O’Rourke, J., Robbins, S., Streinu, I., Toussaint, G., Whitesides, S.: A note on reconfiguring tree linkages: trees can lock. Discrete Appl. Math. 117(1-3), 293–297 (2002)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Cabello, S., Demaine, E.D., Rote, G.: Planar embeddings of graphs with specified edge lengths. J. Graph Algorithms & Appl. 11(1), 259–276 (2007)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Connelly, R., Demaine, E.D., Rote, G.: Infinitesimally locked self-touching linkages with applications to locked trees. In: Physical Knots: Knotting, Linking, and Folding Geometric Objects in ℝ3 (Las Vegas, NV, 2001). Contemp. Math., vol. 304, pp. 287–311. Amer. Math. Soc., Providence (2002)CrossRefGoogle Scholar
  11. 11.
    Connelly, R., Demaine, E.D., Rote, G.: Straightening polygonal arcs and convexifying polygonal cycles. Discrete & Computational Geometry 30(2), 205–239 (2003)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press (2007)Google Scholar
  13. 13.
    Di Battista, G., Nardelli, E.: Hierarchies and planarity theory. IEEE Trans. Systems Man Cybernet. 18(6), 1035–1046 (1988)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Duncan, C.A., Goodrich, M.T.: Planar orthogonal and polyline drawing algorithms. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, ch. 7, pp. 223–246. Chapman and Hall/CRC (2013)Google Scholar
  15. 15.
    Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled level planar trees. Comput. Geom. Th. Appl. 42(6-7), 704–721 (2009)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Garg, A.: New results on drawing angle graphs. Comput. Geom. Th. Appl. 9(1), 43–82 (1998)CrossRefMATHGoogle Scholar
  17. 17.
    Garg, A., Tamassia, R.: Upward planarity testing. Order 12(2), 109–133 (1995)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Harrigan, M., Healy, P.: Practical level planarity testing and layout with embedding constraints. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 62–68. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Hull, T.C.: The combinatorics of flat folds: a survey. In: Hull, T.C. (ed.) Origami3 (Asilomar, CA, 2001), pp. 29–38. A K Peters, Natick (2002)Google Scholar
  21. 21.
    Jünger, M., Leipert, S., Mutzel, P.: Level planarity testing in linear time. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, p. 224. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theory 46(1), 39–47 (2004)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Ribó Mor, A.: Realization and counting problems for planar structures. Ph.D. thesis, Free Univ. Berlin (2006)Google Scholar
  24. 24.
    Saxe, J.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proc. 17th Allerton Conf. Commun. Control Comput., pp. 480–489 (1979)Google Scholar
  25. 25.
    Schaefer, M.: Realizability of graphs and linkages. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 461–482. Springer, New York (2013)CrossRefGoogle Scholar
  26. 26.
    Streinu, I., Whiteley, W.: Single-vertex origami and spherical expansive motions. In: Akiyama, J., Kano, M., Tan, X. (eds.) JCDCG 2004. LNCS, vol. 3742, pp. 161–173. Springer, Heidelberg (2005), http://dx.doi.org/10.1007/11589440_17 CrossRefGoogle Scholar
  27. 27.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Vijayan, G., Wigderson, A.: Rectilinear graphs and their embeddings. SIAM J. Comput. 14(2), 355–372 (1985)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zachary Abel
    • 1
  • Erik D. Demaine
    • 2
  • Martin L. Demaine
    • 2
  • David Eppstein
    • 3
  • Anna Lubiw
    • 4
  • Ryuhei Uehara
    • 5
  1. 1.Department of MathematicsMITCambridgeUSA
  2. 2.Computer Science and Artificial Intelligence Lab.MITCambridgeUSA
  3. 3.Department of Computer ScienceUniversity of CaliforniaIrvineUSA
  4. 4.David R. Cheriton School of Computer ScienceUniversity of WaterlooCanada
  5. 5.School of Information ScienceJapan Advanced Institute of Science and TechnologyIshikawaJapan

Personalised recommendations