The Importance of Being Proper

(In Clustered-Level Planarity and T-Level Planarity)
  • Patrizio Angelini
  • Giordano Da Lozzo
  • Giuseppe Di Battista
  • Fabrizio Frati
  • Vincenzo Roselli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)

Abstract

In this paper we study two problems related to the drawing of level graphs, that is, T-Level Planarity and Clustered-Level Planarity. We show that both problems are \(\mathcal{NP}\)-complete in the general case and that they become polynomial-time solvable when restricted to proper instances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelini, P., Da Lozzo, G., Neuwirth, D.: On the complexity of some problems related to SEFE. CoRR abs/1207.3934 (2013)Google Scholar
  2. 2.
    Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the simultaneous embeddability of two graphs whose intersection is a biconnected or a connected graph. J. of Discrete Algorithms 14, 150–172 (2012)CrossRefMATHGoogle Scholar
  3. 3.
    Angelini, P., Da Lozzo, G.: Deepening the relationship between SEFE and C-planarity. CoRR abs/1404.6175 (2014)Google Scholar
  4. 4.
    Angelini, P., Da Lozzo, G., Neuwirth, D.: On some \(\mathcal{NP}\)-complete SEFE problems. In: Pal, S.P., Sadakane, K. (eds.) WALCOM 2014. LNCS, vol. 8344, pp. 200–212. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Blasiüs, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization. CRC Press (2013)Google Scholar
  6. 6.
    Bläsius, T., Rutter, I.: Disconnectivity and relative positions in simultaneous embeddings. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 31–42. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. In: Khanna, S. (ed.) SODA, pp. 1030–1043. SIAM (2013)Google Scholar
  8. 8.
    Eades, P., Feng, Q.W., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Forster, M., Bachmaier, C.: Clustered level planarity. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 218–228. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Jünger, M., Leipert, S., Mutzel, P.: Level planarity testing in linear time. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 224–237. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Opatrny, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Schaefer, M.: Toward a theory of planarity: Hanani-Tutte and planarity variants. J. of Graph Alg. and Appl. 17(4), 367–440 (2013)MATHMathSciNetGoogle Scholar
  13. 13.
    Wotzlaw, A., Speckenmeyer, E., Porschen, S.: Generalized k-ary tanglegrams on level graphs: A satisfiability-based approach and its evaluation. Discrete Applied Mathematics 160(16-17), 2349–2363 (2012)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Patrizio Angelini
    • 1
  • Giordano Da Lozzo
    • 1
  • Giuseppe Di Battista
    • 1
  • Fabrizio Frati
    • 2
  • Vincenzo Roselli
    • 1
  1. 1.Department of EngineeringRoma Tre UniversityItaly
  2. 2.School of Information TechnologiesThe University of SydneyAustralia

Personalised recommendations