Are Crossings Important for Drawing Large Graphs?

  • Stephen G. Kobourov
  • Sergey Pupyrev
  • Bahador Saket
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)

Abstract

Reducing the number of edge crossings is considered one of the most important graph drawing aesthetics. While real-world graphs tend to be large and dense, most of the earlier work on evaluating the impact of edge crossings utilizes relatively small graphs that are manually generated and manipulated. We study the effect on task performance of increased edge crossings in automatically generated layouts for graphs, from different datasets, with different sizes, and with different densities. The results indicate that increasing the number of crossings negatively impacts accuracy and performance time and that impact is significant for small graphs but not significant for large graphs. We also quantitatively evaluate the impact of edge crossings on crossing angles and stress in automatically constructed graph layouts. We find a moderate correlation between minimizing stress and the minimizing the number of crossings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Archambault, D., Purchase, C.H., Pinadu, B.: The readability of path-preserving clustering of graphs. EuroVis 29(3), 1173–1182 (2010)Google Scholar
  2. 2.
    Bateman, S., Mandryk, R.L., Gutwin, C., Genest, A., McDine, D., Brooks, C.: Useful junk? The effects of visual embellishment on comprehension and memorability of charts. In: CHI, pp. 2573–2582 (2010)Google Scholar
  3. 3.
    Buchheim, C., Chimani, M., Gutwenger, C., Jünger, M., Mutzel, P.: Crossings and planarization. In: Handbook of Graph Drawing and Visualization. CRC Press (2013)Google Scholar
  4. 4.
    Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number and 1-planarity hard. SIAM Journal on Computing 42(5), 1803–1829 (2013)CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Dwyer, T., Lee, B., Fisher, D., Quinn, K.I., Isenberg, P., Robertson, G., North, C.: A comparison of user-generated and automatic graph layouts. IEEE Trans. Vis. Comput. Graphics 15(6), 961–968 (2009)CrossRefGoogle Scholar
  6. 6.
    Ellson, J., Gansner, E.R., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz - open source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed placement. Software: Practice and Experience 21(11), 1129–1164 (1991)Google Scholar
  8. 8.
    Gansner, E.R., Koren, Y., North, S.C.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM Journal on Algebraic Discrete Methods 4(3), 312–316 (1983)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. J. Graph Algorithms Appl. 6(3), 179–202 (2002)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Hliněnỳ, P.: Crossing number is hard for cubic graphs. J. Comb. Theory B 96(4), 455–471 (2006)CrossRefGoogle Scholar
  12. 12.
    Hu, Y.: Efficient, high-quality force-directed graph drawing. Mathematica Journal 10(1), 37–71 (2005)Google Scholar
  13. 13.
    Huang, W., Huang, M.: Exploring the relative importance of number of edge crossings and size of crossing angles: A quantitative perspective. Advanced Intelligence 3(1), 25–42 (2014)Google Scholar
  14. 14.
    Huang, W., Eades, P., Hong, S.H.: Larger crossing angles make graphs easier to read. Visual Languages & Computing 1 (2014)Google Scholar
  15. 15.
    Huang, W., Hong, S.H., Eades, P.: Layout effects on sociogram perception. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 262–273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Jianu, R., Rusu, A., Hu, Y., Taggart, D.: How to display group information on node–link diagrams: an evaluation. IEEE Trans. Vis. Comput. Graphics (to appear, 2014)Google Scholar
  17. 17.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Proc. Let. 31(1), 7–15 (1989)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Koren, Y., Çivril, A.: The binary stress model for graph drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 193–205. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Lee, B., Plaisant, C., Parr, C., Fekete, J.D., Henry, N.: Task taxonomy for graph visualization. In: BELIV, pp. 81–85. ACM Press (2006)Google Scholar
  20. 20.
    Purchase, H.C.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  21. 21.
    Purchase, H., Cohen, R., James, M.: Validating graph drawing aesthetics. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  22. 22.
    Saket, B., Simonetto, P., Kobourov, S., Börner, K.: Node, node-link, and node-link-group diagrams: An evaluation. In: IEEE InfoVis (to appear, 2014)Google Scholar
  23. 23.
    Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Information Visualization 1(2), 103–110 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stephen G. Kobourov
    • 1
  • Sergey Pupyrev
    • 1
    • 2
  • Bahador Saket
    • 1
  1. 1.Department of Computer ScienceUniversity of ArizonaTucsonUSA
  2. 2.Institute of Mathematics and Computer ScienceUral Federal UniversityRussia

Personalised recommendations