Crossing Minimization for 1-page and 2-page Drawings of Graphs with Bounded Treewidth

  • Michael J. Bannister
  • David Eppstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)

Abstract

We investigate crossing minimization for 1-page and 2-page book drawings. We show that computing the 1-page crossing number is fixed-parameter tractable with respect to the number of crossings, that testing 2-page planarity is fixed-parameter tractable with respect to treewidth, and that computing the 2-page crossing number is fixed-parameter tractable with respect to the sum of the number of crossings and the treewidth of the input graph. We prove these results via Courcelle’s theorem on the fixed-parameter tractability of properties expressible in monadic second order logic for graphs of bounded treewidth.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnborg, S., Corneil, D., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth. 8(2), 277–284 (1987), doi:10.1137/0608024CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Auslander, L., Parter, S.V.: On imbedding graphs in the sphere. Journal of Mathematics and Mechanics 10(3), 517–523 (1961)MATHMathSciNetGoogle Scholar
  3. 3.
    Bannister, M.J., Eppstein, D., Simons, J.A.: Fixed parameter tractability of crossing minimization of almost-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 340–351. Springer, Heidelberg (2013), doi:10.1007/978-3-319-03841-4_30CrossRefGoogle Scholar
  4. 4.
    Bernhart, F., Kainen, P.C.: The book thickness of a graph. Journal of Combinatorial Theory, Series B 27(3), 320–331 (1979), doi:10.1016/0095-8956(79)90021-2CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC 1993, pp. 226–234. ACM (1993), doi:10.1145/167088.167161Google Scholar
  6. 6.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209(1-2), 1–45 (1998), doi:10.1016/S0304-3975(97)00228-4CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Chartrand, G., Harary, F.: Planar permutation graphs. Annales de l’institut Henri Poincaré (B) Probabilités et Statistiques 3(4), 433–438 (1967), http://eudml.org/doc/76875 MATHMathSciNetGoogle Scholar
  8. 8.
    Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: A layout problem with applications to VLSI design. SIAM J. Alg. Disc. Meth. 8(1), 33–58 (1987), doi:10.1137/0608002CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation 85(1), 12–75 (1990), doi:10.1016/0890-5401(90)90043-HCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach. Cambridge University Press (2012)Google Scholar
  11. 11.
    Dujmović, V., Fellows, M.R., Kitching, M., Liotta, G., McCartin, C., Nishimura, N., Ragde, P., Rosamond, F., Whitesides, S., Wood, D.R.: On the parameterized complexity of layered graph drawing. Algorithmica 52(2), 267–292 (2008), doi:10.1007/s00453-007-9151-1CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Dujmović, V., Wood, D.R.: Graph treewidth and geometric thickness parameters. Discrete Comput. Geom. 37(4), 641–670 (2007), doi:10.1007/s00454-007-1318-7CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Ebbinghaus, H.-D., Flum, J., Thomas, W.: Mathematical logic, 2nd edn. Undergraduate Texts in Mathematics. Springer (1994), doi:10.1007/978-1-4757-2355-7; Translated from the German by Margit MeßmerGoogle Scholar
  14. 14.
    Goldstein, A.J.: An efficient and constructive algorithm for testing whether a graph can be embedded in a plane. In: Graph and Combinatorics Conference (1963)Google Scholar
  15. 15.
    Grohe, M.: Computing crossing numbers in quadratic time. Journal of Computer and System Sciences 68(2), 285–302 (2004), doi:10.1016/j.jcss.2003.07.008CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Kainen, P.C.: Some recent results in topological graph theory. In: Graphs and Combinatorics. Lecture Notes in Mathematics, vol. 406, pp. 76–108. Springer (1974), doi:10.1007/BFb0066436Google Scholar
  17. 17.
    Kawarabayashi, K., Reed, B.: Computing crossing number in linear time. In: ACM Symp. Theory of Computing (STOC 2007), pp. 382–390 (2007), doi:10.1145/1250790.1250848Google Scholar
  18. 18.
    Mitchell, S.L.: Linear algorithms to recognize outerplanar and maximal outerplanar graphs. Information Processing Letters 9(5), 229–232 (1979), doi:10.1016/0020-0190(79)90075-9CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Ollmann, L.T.: On the book thicknesses of various graphs. In: Proc. 4th Southeastern Conference on Combinatorics, Graph Theory and Computing, vol. 8, p. 459 (1973)Google Scholar
  20. 20.
    Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Crossing numbers and parameterized complexity. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 31–36. Springer, Heidelberg (2008), doi:10.1007/978-3-540-77537-9_6.CrossRefGoogle Scholar
  21. 21.
    Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. Journal of Combinatorial Theory, Series B 63(1), 65–110 (1995), doi:10.1006/jctb.1995.1006CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Shahrokhi, F., Sýkora, O., Székely, L.A., Vřťo, I.: Book embeddings and crossing numbers. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 256–268. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  23. 23.
    Shirey, R.W.: Implementation and Analysis of Efficient Graph Planarity Testing Algorithms. Ph.D. thesis, The University of Wisconsin – Madison (1969)Google Scholar
  24. 24.
    Wattenberg, M.: Arc diagrams: visualizing structure in strings. In: IEEE Symposium on Information Visualization (INFOVIS 2002), pp. 110–116 (2002), doi:10.1109/INFVIS.2002.1173155Google Scholar
  25. 25.
    Wiegers, M.: Recognizing outerplanar graphs in linear time. In: Tinhofer, G., Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 165–176. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  26. 26.
    Yannakakis, M.: Four pages are necessary and sufficient for planar graphs. In: Proc. 18th ACM Symp. on Theory of Computing (STOC 1986), pp. 104–108 (1986), doi:10.1145/12130.12141Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michael J. Bannister
    • 1
  • David Eppstein
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations