On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs

  • Michael A. Bekos
  • Sabine Cornelsen
  • Luca Grilli
  • Seok-Hee Hong
  • Michael Kaufmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)

Abstract

Fan-planar graphs were recently introduced as a generalization of 1-planar graphs. A graph is fan-planar if it can be embedded in the plane, such that each edge that is crossed more than once, is crossed by a bundle of two or more edges incident to a common vertex. A graph is outer-fan-planar if it has a fan-planar embedding in which every vertex is on the outer face. If, in addition, the insertion of an edge destroys its outer-fan-planarity, then it is maximal outer-fan-planar.

In this paper, we present a polynomial-time algorithm to test whether a given graph is maximal outer-fan-planar. The algorithm can also be employed to produce an outer-fan-planar embedding, if one exists. On the negative side, we show that testing fan-planarity of a graph is NP-hard, for the case where the rotation system (i.e., the cyclic order of the edges around each vertex) is given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ackerman, E.: On the maximum number of edges in topological graphs with no four pairwise crossing edges. Discrete & Computational Geometry 41(3), 365–375 (2009)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. Combinatorica 17(1), 1–9 (1997)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing problem is NP-hard. J. Graph Algorithms Appl. 16(2), 569–597 (2012)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth, D., Reislhuber, J.: Recognizing outer 1-planar graphs in linear time. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 107–118. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S.H., Kaufmann, M.: On the recognition of fan-planar and maximal outer-fan-planar graphs. CoRR abs/1409.0461 (September 2014)Google Scholar
  6. 6.
    Cheong, O., Har-Peled, S., Kim, H., Kim, H.S.: On the number of edges of fan-crossing free graphs. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 163–173. Springer, Heidelberg (2013)Google Scholar
  7. 7.
    Reisi Dehkordi, H., Nguyen, Q., Eades, P., Hong, S.-H.: Circular graph drawings with large crossing angles. In: Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 298–309. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. Theor. Comput. Sci. 412(39), 5156–5166 (2011)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Eades, P., Hong, S.H., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear time algorithm for testing maximal 1-planarity of graphs with a rotation system. Theor. Comput. Sci. 513, 65–76 (2013)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Applied Mathematics 161(7-8), 961–969 (2013)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Eggleton, R.: Rectilinear drawings of graphs. Utilitas Mathematica 29, 149–172 (1986)MATHMathSciNetGoogle Scholar
  12. 12.
    Fox, J., Pach, J., Suk, A.: The number of edges in k-quasi-planar graphs. SIAM J. Discrete Math. 27(1), 550–561 (2013)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)MATHGoogle Scholar
  14. 14.
    Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few crossings per edge. Algorithmica 49(1), 1–11 (2007)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Hong, S.H., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing outer-1-planarity. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 71–82. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Hong, S.H., Nagamochi, H.: Testing full outer-2-planarity in linear time. Technical Report 2014-003, Department of Applied Mathematics and Physics, Kyoto University (2014)Google Scholar
  18. 18.
    Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. CoRR abs/1403.6184 (2014)Google Scholar
  19. 19.
    Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. Journal of Graph Theory 72(1), 30–71 (2013)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Pach, J., Radoičić, R., Tóth, G.: Relaxing planarity for topological graphs. In: Akiyama, J., Kano, M. (eds.) JCDCG 2002. LNCS, vol. 2866, pp. 221–232. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Purchase, H.C.: Effective information visualisation: a study of graph drawing aesthetics and algorithms. Interacting with Computers 13(2), 147–162 (2000)CrossRefGoogle Scholar
  23. 23.
    Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Sem. Univ. Hamburg 29, 107–117 (1965)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michael A. Bekos
    • 1
  • Sabine Cornelsen
    • 2
  • Luca Grilli
    • 3
  • Seok-Hee Hong
    • 4
  • Michael Kaufmann
    • 1
  1. 1.Wilhelm-Schickard-Institut für InformatikUniversität TübingenGermany
  2. 2.Dept. of Computer and Information ScienceUniversity of KonstanzGermany
  3. 3.Dipartimento di IngegneriaUniversità degli Studi di PerugiaItaly
  4. 4.School of Information TechnologiesUniversity of SydneyAustralia

Personalised recommendations