Drawing Outer 1-planar Graphs with Few Slopes

  • Emilio Di Giacomo
  • Giuseppe Liotta
  • Fabrizio Montecchiani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)

Abstract

A graph is outer 1-planar if it admits a drawing where each vertex is on the outer face and each edge is crossed by at most another edge. Outer 1-planar graphs are a superclass of the outerplanar graphs and a subclass of the partial 3-trees. We show that an outer 1-planar graph G of bounded degree Δ admits an outer 1-planar straight-line drawing that uses O(Δ) different slopes, which extends a previous result by Knauer et al. about the planar slope number of outerplanar graphs (CGTA, 2014). We also show that O2) slopes suffice to construct a crossing-free straight-line drawing of G; the best known upper bound on the planar slope number of planar partial 3-trees of bounded degree Δ is O5) and is proved by Jelínek et al. (Graphs and Combinatorics, 2013).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: Straight-line grid drawings of 3-connected 1-planar graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 83–94. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth, D., Reislhuber, J.: Recognizing outer 1-planar graphs in linear time. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 107–118. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Barát, J., Matousek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large geometric thickness. The Electronic Journal of Combinatorics 13(1) (2006)Google Scholar
  4. 4.
    Brandenburg, F.-J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K., Reislhuber, J.: On the density of maximal 1-planar graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 327–338. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Dehkordi, H.R., Eades, P.: Every outer-1-plane graph has a right angle crossing drawing. International Journal on Computational Geometry and Applications 22(6), 543–558 (2012)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM Journal on Computing 25(5), 956–997 (1996)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Di Giacomo, E., Liotta, G., Montecchiani, F.: The planar slope number of subcubic graphs. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 132–143. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Didimo, W.: Density of straight-line 1-planar graph drawings. IPL 113(7), 236–240 (2013)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Dujmović, V., Suderman, M., Wood, D.R.: Graph drawings with few slopes. Computational Geometry 38(3), 181–193 (2007)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Eades, P., Hong, S.-H., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: Testing maximal 1-planarity of graphs with a rotation system in linear time. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 339–345. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Hong, S.-H., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time algorithm for testing outer-1-planarity. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 71–82. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Hong, S.-H., Eades, P., Liotta, G., Poon, S.-H.: Fáry’s theorem for 1-planar graphs. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 335–346. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Jelínek, V., Jelínková, E., Kratochvíl, J., Lidický, B., Tesar, M., Vyskocil, T.: The planar slope number of planar partial 3-trees of bounded degree. Graphs and Combinatorics 29(4), 981–1005 (2013)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree with few slopes. SIAM Journal on Discrete Mathematics 27(2), 1171–1183 (2013)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Knauer, K.B., Micek, P., Walczak, B.: Outerplanar graph drawings with few slopes. Computational Geometry 47(5), 614–624 (2014)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of 1-planarity testing. Journal of Graph Theory 72(1), 30–71 (2013)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Lenhart, W., Liotta, G., Mondal, D., Nishat, R.: Planar and plane slope number of partial 2-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 412–423. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Mukkamala, P., Pálvölgyi, D.: Drawing cubic graphs with the four basic slopes. In: van Kreveld, M.J., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 254–265. Springer, Heidelberg (2011)Google Scholar
  19. 19.
    Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope numbers. The Electronic Journal of Combinatorics 13(1) (2006)Google Scholar
  20. 20.
    Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Comb. 17(3), 427–439 (1997)MATHGoogle Scholar
  21. 21.
    Wade, G.A., Chu, J.-H.: Drawability of complete graphs using a minimal slope set. The Computer Journal 37(2), 139–142 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Emilio Di Giacomo
    • 1
  • Giuseppe Liotta
    • 1
  • Fabrizio Montecchiani
    • 1
  1. 1.Dip. di IngegneriaUniversità degli Studi di PerugiaItaly

Personalised recommendations