GION: Interactively Untangling Large Graphs on Wall-Sized Displays

  • Michael R. Marner
  • Ross T. Smith
  • Bruce H. Thomas
  • Karsten Klein
  • Peter Eades
  • Seok-Hee Hong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8871)

Abstract

Data sets of very large graphs are now commonplace; the scale of these graphs presents considerable difficulties for graph visualization methods. The use of interactive techniques and large screens have been proposed as two possible avenues to address these difficulties.This paper presents GION, a new skeletal animation technique for interacting with large graphs on wall-sized displays. Our technique is based on a physical simulation, and aims to enhance the users’ ability to efficiently interact with the graph visualization for exploratory analysis. We conducted a user study to evaluate our technique against standard operations available in most graph layout editors, and the study shows that the new technique produces layouts with less stress, and fewer edge crossings. GION is preferred by users, and requires significantly less mouse movement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball, R., North, C., Bowman, D.: Move to improve: promoting physical navigation to increase user performance with large displays. In: Proc. of the SIGCHI Conference on Human Factors in Computing Systems, pp. 191–200. ACM (2007)Google Scholar
  2. 2.
    Catherine, R., Sudarshan, S.: Graph clustering for keyword search. In: Chawla, S., Karlapalem, K., Pudi, V. (eds.) COMAD. Computer Society of India (2009)Google Scholar
  3. 3.
    Dwyer, T., Lee, B., Fisher, D., Quinn, K.I., Isenberg, P., Robertson, G.G., North, C.: A comparison of user-generated and automatic graph layouts. IEEE Trans. Vis. Comput. Graph. 15(6), 961–968 (2009)CrossRefGoogle Scholar
  4. 4.
    Gansner, E.R., Hu, Y., Krishnan, S.: Coast: A convex optimization approach to stress-based embedding. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 268–279. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Gansner, E.R., Hu, Y., North, S.C.: A maxent-stress model for graph layout. IEEE Trans. Vis. Comput. Graph. 19(6), 927–940 (2013)CrossRefGoogle Scholar
  6. 6.
    Hachul, S., Jünger, M.: Large-graph layout algorithms at work: An experimental study. J. Graph Algorithms Appl. 11(2), 345–369 (2007)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Huang, W., Eades, P., Hong, S.H., Lin, C.C.: Improving force-directed graph drawings by making compromises between aesthetics. In: VL/HCC, pp. 176–183 (2010)Google Scholar
  8. 8.
    Lewis, J.P., Cordner, M., Fong, N.: Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation. In: Proc. of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2000, pp. 165–172. ACM Press/Addison-Wesley Publishing Co., New York (2000)Google Scholar
  9. 9.
    Merrick, D., Dwyer, T.: Skeletal animation for the exploration of graphs. In: Australasian Symposium on Information Visualisation, InVis.au, pp. 61–70. Christchurch, New Zealand (2004)Google Scholar
  10. 10.
    Murray, C., Merrick, D., Takatsuka, M.: Graph interaction through force-based skeletal animation. In: Australasian Symposium on Information Visualisation, InVis, pp. 81–90. Christchurch, New Zealand (2004)Google Scholar
  11. 11.
    Novák, P., Neumann, P., Macas, J.: Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11, 378 (2010)CrossRefGoogle Scholar
  12. 12.
    Peck, S., North, C., Bowman, D.: A multiscale interaction technique for large, high-resolution displays. In: IEEE Symposium on 3D User Interfaces, 3DUI 2009, pp. 31–38. IEEE (2009)Google Scholar
  13. 13.
    Purchase, H.C.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Purchase, H.C.: Metrics for graph drawing aesthetics. Journal of Visual Languages & Computing 13(5), 501–516 (2002)CrossRefGoogle Scholar
  15. 15.
    Raskar, R., Brown, M.S., Yang, R., Chen, W.C., Welch, G., Towles, H., Seales, B., Fuchs, H.: Multi-projector displays using camera-based registration. In: Proc. of the Conference on Visualization 1999: Celebrating Ten Years, pp. 161–168. IEEE Computer Society Press, San Francisco (1999)Google Scholar
  16. 16.
    Thomas, B.H., Calder, P.: Applying cartoon animation techniques to graphical user interfaces. ACM Transactions on Computer-Human Interaction (TOCHI) 8(3), 198–222 (2001)CrossRefGoogle Scholar
  17. 17.
    Welman, C.: Inverse kinematics and geometric contraints for articulated figure movement. Master’s thesis, Simon Fraser University (1993)Google Scholar
  18. 18.
    Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal 49, 291–307 (1970)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michael R. Marner
    • 1
  • Ross T. Smith
    • 1
  • Bruce H. Thomas
    • 1
  • Karsten Klein
    • 2
  • Peter Eades
    • 2
  • Seok-Hee Hong
    • 2
  1. 1.University of South AustraliaAdelaideAustralia
  2. 2.The University of SydneySydneyAustralia

Personalised recommendations