Medicines are digitalized as aspects of their regulation and use are embodied in or draw from interlinked computerized systems and databases. This paper considers how this development changes the delivery of health care, the pharma industry, and regulatory and professional structures, as it reconfigures the material character of drugs themselves. It draws on the concept of assemblage in presenting a theory-based analysis that explores digital drugs’ ontological status including how they embody benefit and value. The paper addresses three interconnected domains – that of use of drugs (practice), of research (epistemology) and of regulation (structures).


pharmaceutical preparations individualized medicine digital drugs healthcare assemblage 


  1. 1.
    Yoo, Y.: Computing in Everyday Life: A Call for Research on Experiential Computing. MIS Quarterly 34, 213–231 (2010)Google Scholar
  2. 2.
    PricewaterhouseCoopers: Pharma 2020: The Vision – Which Path Will You Take. PricewaterhouseCoopers, London (2007)Google Scholar
  3. 3.
    Goozner, M.: The $800 Million Pill – The Truth behind the Cost of New Drugs. University of California Press, Berkley and Los Angeles (2004) Google Scholar
  4. 4.
    OFT: Medicines Distribution: An OFT Market Study. Office of Fair Trading, London (2007)Google Scholar
  5. 5.
    FDA: The Drug Development Process. U.S. Food and Drug Administration,
  6. 6.
    Orlikowski, W.J.: Using Technology and Constituting Structures: A Practice Lens for Studying Technology in Organizations. Organization Science 11(4), 404–428 (2000)CrossRefGoogle Scholar
  7. 7.
    Cornford, T., Savage, I., Jani, Y., Franklin, B.D., Barber, N., Slee, A., Jacklin, A.: Learning Lessons from Electronic Prescribing Implementations in Secondary Care. Studies in Health Technology and Informatics 160, 233–237 (2009)Google Scholar
  8. 8.
    Shoenbill, K., Fost, N., Tachinardi, U., Mendonca, E.A.: Genetic Data and Electronic Health Records: A Discussion of Ethical, Logistical and Technological Considerations. Journal of the American Medical Informatics Association 21, 171–180 (2014)CrossRefGoogle Scholar
  9. 9.
    Bell, G.C., Crews, K.R., Wilkinson, M.R., Haidar, C.E., Hicks, J.K., Baker, D., ... Hoffman, J.M.: Development and Use of Active Clinical Decision Support for Preemptive Pharmacogenomics. Journal of the American Medical Informatics Association 21, e93-e99 (2014)Google Scholar
  10. 10.
    Hingorani, A.D., van der Windt, D.A., Riley, R.D., Abrams, K., Moons, K.G.M., Steyerberg, E.W., ... Hemingway, H.: Prognosis Research Strategy (PROGRESS) 4: Stratified Medicine Research. BMJ 346, e5793 (2013)Google Scholar
  11. 11.
    Hamburg, M.A., Collins, F.S.: The Path to Personalized Medicine. N England J. M. 363, 301–304 (2010)CrossRefGoogle Scholar
  12. 12.
    Schleidgen, S., Klingler, C., Bertram, T., Rogowski, W., Marckmann, G.: What Is Personalized Medicine: Sharpening a Vague Term Based on a Systematic Literature Review. BMC Medical Ethics 14, 55 (2013)CrossRefGoogle Scholar
  13. 13.
    Proteus Digital Health: Digital Medicines – Shifting the Care Paradigm,
  14. 14.
    Proteus Digital Health: Digital Health Feedback System,
  15. 15.
    Chen, R., Mias, G.I., Li-Pook-Than, J., Jiang, L., Lam, H.Y.K., Chen, R., ... Snyder, M.: Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes. Cell 148, 1293–1307 (2012)Google Scholar
  16. 16.
    Nuffield Council on Bioethics: Medical Profiling and Online Medicine: The Ethics of ‘Personalised Healthcare’ in a Consumer Age. Nuffield Council on Bioethics, London (2010)Google Scholar
  17. 17.
    Medicines and Healthcare Products Regulatory Agency: Pharmacovigilance – How We Monitor the Safety of Medicines,
  18. 18.
    Freifeld, C., Brownstein, J., Menone, C., Bao, W., Filice, R., Kass-Hout, T., Dasgupta, N.: Digital Drug Safety Surveillance: Monitoring Pharmaceutical Products in Twitter. Drug Safety 37, 343–350 (2014)CrossRefGoogle Scholar
  19. 19.
    Goldspiel, B.R., Flegel, W.A., DiPatrizio, G., Sissung, T., Adams, S.D., Penzak, S.R., McKeeby, J.W.: Integrating Pharmacogenetic Information and Clinical Decision Support into the Electronic Health Record. Journal of the American Medical Informatics Association 21, 522–528 (2014)CrossRefGoogle Scholar
  20. 20.
    Almuzaini, T., Choonara, I., Sammons, H.: Substandard and Counterfeit Medicines: A Systematic Review of the Literature. BMJ Open 3, e002923 (2013)Google Scholar
  21. 21.
  22. 22.
    Connolly, K.: Can ’Digital Drugs’ Get You High? BBC News (July 22, 2010),
  23. 23.
    Marcus, G.E., Saka, E.: Assemblage. Theory, Culture & Society 23, 101–106 (2006)CrossRefGoogle Scholar
  24. 24.
    De Landa, M.: Intensive Science and Virtual Philosophy. Continuum Press, London (2002)Google Scholar
  25. 25.
    Smith, D., Protevi, J.: Gilles Deleuze. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Spring edn. 2013),
  26. 26.
    Wiener, N.: The Human Use of Human Beings. Houghton Mifflin, Boston (1954)Google Scholar
  27. 27.
    Chatellier, G., Zapletal, E., Lemaitre, D., Menard, J., Degoulet, P.: The Number Needed to Treat: A Clinically Useful Nomogram in Its Proper Context. BMJ 312, 426–429 (1996)CrossRefGoogle Scholar
  28. 28.
    Toms, L., Derry, S., Moore, R.A., McQuay, H.J.: Single Dose Oral Paracetamol (Acetaminophen) with Codeine for Postoperative Pain in Adults. Cochrane Database of Systematic Reviews 1, Article CD001547 (2009)Google Scholar
  29. 29.
    Yoo, Y.: Digital Materiality and the Emergence of an Evolutionary Science of the Artificial. In: Leonardi, P., Nardi, B., Kallinikos, J. (eds.) Materiality and Organizing: Social Interaction in a Technological World, pp. 134-154. Oxford University Press, Oxford (2012) Google Scholar
  30. 30.
    Quah, D.: Digital Goods and the New Economy. CEP Discussion Paper CEPDP0563. Centre for Economic Performance. London School of Economics and Political Science (2003),
  31. 31.
    Blumenthal, D., Tavenner, M.: The “Meaningful Use” Regulation for Electronic Health Records. New England Journal of Medicine 363, 501–504 (2010)CrossRefGoogle Scholar
  32. 32.
    Dixon, B.E., Jabour, A.M., Phillips, E.O.K., Marrero, D.G.: An Informatics Approach to Medication Adherence Assessment and Improvement Using Clinical, Billing, and Patient-Entered Data. Journal of the American Medical Informatics Association 21, 517–521 (2014)CrossRefGoogle Scholar
  33. 33.
    Kawamoto, K., Lobach, D., Willard, H., Ginsburg, G.: A National Clinical Decision Support Infrastructure to Enable the Widespread and Consistent Practice of Genomic and Personalized Medicine. BMC Medical Informatics and Decision Making 9, 17 (2009)CrossRefGoogle Scholar
  34. 34.
    Welch, B.M., Kawamoto, K.: Clinical Decision Support for Genetically Guided Personalized Medicine: A Systematic Review. Journal of the American Medical Informatics Association 20, 388–400 (2013)CrossRefGoogle Scholar
  35. 35.
    Buntin, M.B., Jain, S.H., Blumenthal, D.: Health Information Technology: Laying The Infrastructure For National Health Reform. Health Affairs 29, 1214–1219 (2010)CrossRefGoogle Scholar
  36. 36.
    Vargo, S.L., Lusch, R.F.: Evolving to a New Dominant Logic for Marketing. Journal of Marketing 68, 1–17 (2004)CrossRefGoogle Scholar
  37. 37.
    Lesko, L.J., Zineh, I., Huang, S.M.: What Is Clinical Utility and Why Should We Care? American Society of Clinical Pharmacology and Therapeutics 88, 729–733 (2010)CrossRefGoogle Scholar
  38. 38.
    Claxton, K., Briggs, A., Buxton, M.J., Culyer, A.J., McCabe, C., Walker, S., Sculpher, M.J.: Value Based Pricing for NHS Drugs: An Opportunity Not to Be Missed? BMJ 336, 251–254 (2008)CrossRefGoogle Scholar
  39. 39.
    Claxton, K., Sculpher, M., Carroll, S.: Value-Based Pricing For Pharmaceuticals: Its Role, Specification and Prospects in a Newly Devolved NHS. CHE Research Paper 60. Centre for Health Economics, University of York (2011)Google Scholar
  40. 40.
    Lewis, J., Lipworth, W., Kerridge, I.: Ethics, Evidence and Economics in the Pursuit of “Personalized Medicine”. J. Pers. Med. 4,137-146 (2014)Google Scholar
  41. 41.
    Schneeweiss, S.: Learning from Big Health Care Data. New England Journal of Medicine 370, 2161–2163 (2014)CrossRefGoogle Scholar
  42. 42.
    Ren, Z., Davidian, M., George, S.L., Goldberg, R.M., Wright, F.A., Tsiatis, A., Kosorok, M.R.: Research Methods for Clinical Trials in Personalized Medicine: A Systematic Review. In: Srivastava, R. Maksymowicz, W. Lopaczynski,W. (eds.) Los. In: Translation: Barriers to Incentives for Translational Research in Medical Sciences, pp. 659-684. World Scientific, Singapore (2014)Google Scholar
  43. 43.
    Hawe, P., Shiell, A., Riley, T.: Complex Interventions: How “Out of Control” Can a Randomised Controlled Trial Be? BMJ 328, 1561–1563 (2004)CrossRefGoogle Scholar
  44. 44.
    Psaty, B.M., Breckenridge, A.M.: Mini-Sentinel and Regulatory Science – Big Data Rendered Fit and Functional. New England Journal of Medicine 370, 2165–2167 (2014)CrossRefGoogle Scholar
  45. 45.
    Bhattacharya, S.: Up to 140,000 Heart Attacks Linked to Vioxx. New Scientist (January 25, 2005),
  46. 46.
    Singh, D.: Merck Withdraws Arthritis Drug Worldwide. BMJ 329, 816 (2004)CrossRefGoogle Scholar
  47. 47.
    Brewer, G.J.: Drug Development for Orphan Diseases in the Context of Personalized Medicine. Translational Research 154, 314–322 (2009)CrossRefGoogle Scholar
  48. 48.
    FDA: Paving the Way for Personalized Medicine – FDA’s Role in a New Era of Medical Product Development. U.S. Food and Drug Administration (2013),
  49. 49.
    Merlin, T., Farah, C., Schubert, C., Mitchell, A., Hiller, J.E., Ryan, P.: Assessing Personalized Medicines in Australia: A National Framework for Reviewing Codependent Technologies. Medical Decision Making 33, 333–342 (2013)CrossRefGoogle Scholar
  50. 50.
    Niezen, M.G., Bal, R., De Bont, A.: Reconfiguring Policy and Clinical Practice How Databases Have Transformed the Regulation of Pharmaceutical Care? Science, Technology & Human Values 38, 44–66 (2013)CrossRefGoogle Scholar
  51. 51.
    Burstin, H.: The Journey to Electronic Performance Measurement. Annals of Internal Medicine 158, 131–132 (2013)CrossRefGoogle Scholar
  52. 52.
    Gitelman, L. (ed.): Raw Data Is an Oxymoron. MIT Press (2013)Google Scholar
  53. 53.
    Beaulieu, A.: Voxels in the Brain Neuroscience, Informatics and Changing Notions of Objectivity. Social Studies of Science 31, 635–680 (2001)CrossRefGoogle Scholar
  54. 54.
    Beaulieu, A.: From Brainbank to Database: The Informational Turn in the Study of the Brain. Studies in History and Philosophy of Biological and Biomedical Sciences 35, 367–390 (2004)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Tony Cornford
    • 1
  • Valentina Lichtner
    • 2
  1. 1.Department of ManagementLondon School of Economics and Political ScienceLondonUK
  2. 2.Decision Making Research Group, School of HealthcareUniversity of LeedsLeedsUK

Personalised recommendations