Advertisement

Automatic Security Evaluation and (Related-key) Differential Characteristic Search: Application to SIMON, PRESENT, LBlock, DES(L) and Other Bit-Oriented Block Ciphers

  • Siwei Sun
  • Lei Hu
  • Peng Wang
  • Kexin Qiao
  • Xiaoshuang Ma
  • Ling Song
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8873)

Abstract

We propose two systematic methods to describe the differential property of an S-box with linear inequalities based on logical condition modelling and computational geometry respectively. In one method, inequalities are generated according to some conditional differential properties of the S-box; in the other method, inequalities are extracted from the H-representation of the convex hull of all possible differential patterns of the S-box. For the second method, we develop a greedy algorithm for selecting a given number of inequalities from the convex hull. Using these inequalities combined with Mixed-integer Linear Programming (MILP) technique, we propose an automatic method for evaluating the security of bit-oriented block ciphers against the (related-key) differential attack with several techniques for obtaining tighter security bounds, and a new tool for finding (related-key) differential characteristics automatically for bit-oriented block ciphers.

Keywords

Automatic cryptanalysis Related-key differential attack Mixed-integer Linear Programming Convex hull 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrecht, M., Cid, C.: Cold boot key recovery by solving polynomial systems with noise. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 57–72. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON and SPECK. In: Fast Software Encryption, FSE 2014 (2014)Google Scholar
  3. 3.
    Alkhzaimi, H.A., Lauridsen, M.M.: Cryptanalysis of the SIMON family of block ciphers. Cryptology ePrint Archive, Report 2013/543 (2013), http://eprint.iacr.org/2013/543
  4. 4.
    Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: A 128-bit block cipher suitable for multiple platforms - design and analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 39–56. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint Archive, Report 2013/404 (2013), http://eprint.iacr.org/2013/404
  6. 6.
    Biham, E., Anderson, R., Knudsen, L.: Serpent: A new block cipher proposal. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology 4(1), 3–72 (1991)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: fides: Lightweight authenticated cipher with side-channel resistance for constrained hardware. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142–158. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Biryukov, A.: Impossible differential attack. In: Encyclopedia of Cryptography and Security, pp. 597–597. Springer (2011)Google Scholar
  10. 10.
    Biryukov, A., Nikolić, I.: Automatic search for related-key differential characteristics in byte-oriented block ciphers: Application to AES, Camellia, Khazad and others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Biryukov, A., Nikolić, I.: Search for related-key differential characteristics in DES-like ciphers. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 18–34. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Biryukov, A., Velichkov, V.: Automatic search for differential trails in ARX ciphers. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 227–250. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  13. 13.
    Blondeau, C., Bogdanov, A., Leander, G.: Bounds in shallows and in miseries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 204–221. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Bogdanov, A.: On unbalanced feistel networks with contracting MDS diffusion. Designs, Codes and Cryptography 59(1-3), 35–58 (2011)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen, L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçın, T.: PRINCE – A low-latency block cipher for pervasive computing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Borghoff, J., Knudsen, L.R., Stolpe, M.: Bivium as a mixed-integer linear programming problem. In: Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 133–152. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Bulygin, S., Walter, M.: Study of the invariant coset attack on PRINTcipher: more weak keys with practical key recovery. Tech. rep., Cryptology ePrint Archive, Report 2012/85 (2012), http://eprint.iacr.org/2012/085.pdf
  19. 19.
    Daemen, J., Rijmen, V., Proposal, A.: Rijndael. In: Proceedings from the First Advanced Encryption Standard Candidate Conference, National Institute of Standards and Technology (NIST) (1998)Google Scholar
  20. 20.
    Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mendel, F., Mennink, B., Mouha, N., Wang, Q., Yasuda, K.: PRIMATEs v1. CAESAR submission (2014), http://competitions.cr.yp.to/round1/primatesv1.pdf
  21. 21.
    Kavun, E.B., Lauridsen, M.M., Leander, G., Rechberger, C., Schwabe, P., Yalcin, T.: Pr∅st v1. CAESAR submission (2014), http://competitions.cr.yp.to/round1/proestv1.pdf
  22. 22.
    Emami, S., Ling, S., Nikolic, I., Pieprzyk, J., Wang, H.: The resistance of PRESENT-80 against related-key differential attacks. Cryptology ePrint Archive, Report 2013/522 (2013), http://eprint.iacr.org/
  23. 23.
    Abed, F., List, E., Wenzel, J., Lucks, S.: Differential cryptanalysis of round-reduced SIMON and SPECK. In: Fast Software Encryption, FSE 2014 (2014)Google Scholar
  24. 24.
    Abed, F., List, E., Lucks, S., Wenzel, J.: Differential and linear cryptanalysis of reduced-round SIMON. Cryptology ePrint Archive, Report 2013/526 (2013), http://eprint.iacr.org/526/
  25. 25.
    Fouque, P.A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key distinguisher of 9-round AES-128. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  26. 26.
    Fuhr, T.: Finding second preimages of short messages for Hamsi-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 20–37. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  27. 27.
    Nikolić, I.: Tweaking AES. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 198–210. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Alizadeh, J., Bagheri, N., Gauravaram, P., Kumar, A., Sanadhya, S.K.: Linear cryptanalysis of round reduced SIMON. Cryptology ePrint Archive, Report 2013/663 (2013), http://eprint.iacr.org/2013/663
  29. 29.
    Jean, J., Nikolić, I., Peyrin, T.: Deoxys v1. CAESAR submission (2014), http://competitions.cr.yp.to/round1/deoxysv1.pdf
  30. 30.
    Jean, J., Nikolić, I., Peyrin, T.: Joltik v1. CAESAR submission (2014), http://competitions.cr.yp.to/round1/joltikv1.pdf
  31. 31.
    Jean, J., Nikolić, I., Peyrin, T.: Kiasu v1. CAESAR submission (2014), http://competitions.cr.yp.to/round1/kiasuv1.pdf
  32. 32.
    Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis of NLFSR-based cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 130–145. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  33. 33.
    Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis of trivium and KATAN. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 200–212. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  34. 34.
    Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  35. 35.
    Lai, X., Massey, J.L.: Markov ciphers and differential cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  36. 36.
    Lamberger, M., Nad, T., Rijmen, V.: Numerical solvers and cryptanalysis. Journal of Mathematical Cryptology 3(3), 249–263 (2009)CrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    Leander, G., Paar, C., Poschmann, A., Schramm, K.: New lightweight DES variants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  38. 38.
    Lehmann, M., Meier, W.: Conditional differential cryptanalysis of grain-128a. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 1–11. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  39. 39.
    Leurent, G.: Construction of differential characteristics in ARX designs application to skein. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 241–258. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  40. 40.
    Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  41. 41.
    Lipmaa, H., Wallén, J., Dumas, P.: On the additive differential probability of exclusive-or. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 317–331. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  42. 42.
    Matsui, M.: On correlation between the order of S-boxes and the strength of DES. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 366–375. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  43. 43.
    Mouha, N., Preneel, B.: Towards finding optimal differential characteristics for ARX: Application to Salsa20. Cryptology ePrint Archive, Report 2013/328 (2013), http://eprint.iacr.org/2013/328
  44. 44.
    Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  45. 45.
    Optimization, Gurobi: Gurobi optimizer reference manual (2013), http://www.gurobi.com
  46. 46.
    Oren, Y., Kirschbaum, M., Popp, T., Wool, A.: Algebraic side-channel analysis in the presence of errors. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 428–442. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  47. 47.
    Özen, O., Varıcı, K., Tezcan, C., Kocair, Ç.: Lightweight block ciphers revisited: Cryptanalysis of reduced round PRESENT and HIGHT. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 90–107. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  48. 48.
    Sun, S., Hu, L., Song, L., Xie, Y., Wang, P.: Automatic security evaluation of block ciphers with s-bp structures against related-key differential attacks. In: International Conference on Information Security and Cryptology – Inscrypt 2013 (2013)Google Scholar
  49. 49.
    Stein, W., et al.: Sage: Open source mathematical software (2008)Google Scholar
  50. 50.
    Tezcan, C.: Improbable differential attacks on PRESENT using undisturbed bits. Journal of Computional and Applied Mathematics 259, 503–511 (2014)CrossRefGoogle Scholar
  51. 51.
    Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  52. 52.
    Walter, M., Bulygin, S., Buchmann, J.: Optimizing guessing strategies for algebraic cryptanalysis with applications to EPCBC. In: Kutyłowski, M., Yung, M. (eds.) Inscrypt 2012. LNCS, vol. 7763, pp. 175–197. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  53. 53.
    Winnen, L.: Sage S-box MILP toolkit, http://www.ecrypt.eu.org/tools/sage-s-box-milp-toolkit
  54. 54.
    Wu, S., Wang, M.: Security evaluation against differential cryptanalysis for block cipher structures. Tech. rep., Cryptology ePrint Archive, Report 2011/551 (2011), http://eprint.iacr.org/2011/551.pdf
  55. 55.
    Wu, S., Wu, H., Huang, T., Wang, M., Wu, W.: Leaked-state-forgery attack against the authenticated encryption algorithm ALE. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 377–404. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  56. 56.
    Wu, W., Zhang, L.: LBlock: A lightweight block cipher. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  57. 57.
    Yap, H., Khoo, K., Poschmann, A., Henricksen, M.: EPCBC - A block cipher suitable for electronic product code encryption. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 76–97. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  58. 58.
    Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui, M., Hirose, S.: Minalpher v1. CAESAR submission (2014), http://competitions.cr.yp.to/round1/minalpherv1.pdf

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Siwei Sun
    • 1
    • 2
  • Lei Hu
    • 1
    • 2
  • Peng Wang
    • 1
    • 2
  • Kexin Qiao
    • 1
    • 2
  • Xiaoshuang Ma
    • 1
    • 2
  • Ling Song
    • 1
    • 2
  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.Data Assurance and Communication Security Research CenterChinese Academy of SciencesBeijingChina

Personalised recommendations