Advertisement

Improving the Polynomial time Precomputation of Frobenius Representation Discrete Logarithm Algorithms

Simplified Setting for Small Characteristic Finite Fields
  • Antoine Joux
  • Cécile Pierrot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8873)

Abstract

In this paper, we revisit the recent small characteristic discrete logarithm algorithms. We show that a simplified description of the algorithm, together with some additional ideas, permits to obtain an improved complexity for the polynomial time precomputation that arises during the discrete logarithm computation. With our new improvements, this is reduced to O(q 6), where q is the cardinality of the basefield we are considering. This should be compared to the best currently documented complexity for this part, namely O(q 7). With our simplified setting, the complexity of the precomputation in the general case becomes similar to the complexity known for Kummer (or twisted Kummer) extensions.

References

  1. [AMORH14]
    Adj, G., Menezes, A., Oliveira, T., Rodríguez-Henríquez, F.: Computing discrete logarithms in \(\mathbb{F}_{3^{6\cdot 137}}\) and \(\mathbb{F}_{3^{6\cdot 163}}\) using Magma. Cryptology ePrint Archive, Report 2014/057 (2014)Google Scholar
  2. [BBD+13]
    Barbulescu, R., Bouvier, C., Detrey, J., Gaudry, P., Jeljeli, H., Thomé, E., Videau, M., Zimmermann, P.: Discrete logarithm in \(\mathbb{F}_{2^809}\) with ffs. Cryptology ePrint Archive, Report 2013/197 (2013)Google Scholar
  3. [BGJT14]
    Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  4. [BMV85]
    Blake, I.F., Mullin, R.C., Vanstone, S.A.: Computing logarithms in \(\mathbb{F}_{2^n}\). In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 73–82. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  5. [GGMZ13a]
    Göloğlu, F., Granger, R., McGuire, G., Zumbrägel, J.: On the function field sieve and the impact of higher splitting probabilities - application to discrete logarithms in \(\mathbb{F}_{2^{1971}}\) and \(\mathbb{F}_{2^{3164}}\). In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 109–128. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. [GGMZ13b]
    Göloglu, F., Granger, R., McGuire, G., Zumbrägel, J.: On the function field sieve and the impact of higher splitting probabilities: Application to discrete logarithms in \(\mathbb{F}_{2^{1971}}\). Cryptology ePrint Archive, Report 2013/074 (2013)Google Scholar
  7. [GKZ14a]
    Granger, R., Kleinjung, T., Zumbrägel, J.: Breaking ‘128-bit secure’ supersingular binary curves (or how to solve discrete logarithms in \(\mathbb{F}_{2^{4 \cdot 1223}}\) and \(\mathbb{F}_{2^{12 \cdot 367}}\)). Cryptology ePrint Archive, Report 2014/119 (2014)Google Scholar
  8. [GKZ14b]
    Granger, R., Kleinjung, T., Zumbrägel, J.: On the powers of 2. Cryptology ePrint Archive, Report 2014/300 (2014)Google Scholar
  9. [Jou13a]
    Joux, A.: Faster index calculus for the medium prime case application to 1175-bit and 1425-bit finite fields. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 177–193. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. [Jou13b]
    Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in very small characteristic. Cryptology ePrint Archive, Report 2013/095 (2013)Google Scholar
  11. [Jou14]
    Joux, A.: A new index calculus algorithm with complexity L(1/4 + o(1)) in small characteristic. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 355–380. Springer, Heidelberg (2014)Google Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Antoine Joux
    • 1
    • 2
  • Cécile Pierrot
    • 2
    • 3
  1. 1.CryptoExperts, France and Chaire de Cryptologie de la Fondation de l’UPMCParisFrance
  2. 2.Laboratoire d’Informatique de Paris 6, UPMC Sorbonnes UniversitésParisFrance
  3. 3.CNRS and Direction Générale de l’ArmementFrance

Personalised recommendations