Advertisement

Simulatable Leakage: Analysis, Pitfalls, and New Constructions

  • Jake Longo
  • Daniel P. Martin
  • Elisabeth Oswald
  • Daniel Page
  • Martijin Stam
  • Michael J. Tunstall
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8873)

Abstract

In 2013, Standaert et al. proposed the notion of simulatable leakage to connect theoretical leakage resilience with the practice of side channel attacks. Their use of simulators, based on physical devices, to support proofs of leakage resilience allows verification of underlying assumptions: the indistinguishability game, involving real vs. simulated leakage, can be ‘played’ by an evaluator. Using a concrete, block cipher based leakage resilient PRG and high-level simulator definition (based on concatenating two partial leakage traces), they included detailed reasoning why said simulator (for AES-128) resists state-of-the-art side channel attacks.

In this paper, we demonstrate a distinguisher against their simulator and thereby falsify their hypothesis. Our distinguishing technique, which is evaluated using concrete implementations of the Standaert et al. simulator on several platforms, is based on ‘tracking’ consistency (resp. identifying simulator inconsistencies) in leakage traces by means of cross-correlation. In attempt to rescue the approach, we propose several alternative simulator definitions based on splitting traces at points of low intrinsic cross-correlation. Unfortunately, these come with significant caveats, and we conclude that the most natural way of producing simulated leakage is by using the underlying construction ‘as is’ (but with a random key).

Keywords

leakage resilience side channel attack simulatable leakage cross-correlation 

References

  1. 1.
    Atmel. AT89S8253 Datasheet, http://www.atmel.com/Images/doc3286.pdf
  2. 2.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–302 (2008)Google Scholar
  5. 5.
    Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting circuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 239–252. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Lai, X., Massey, J.L.: Hash functions based on block ciphers. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  10. 10.
    Longo Galea, J., Martin, D., Oswald, E., Page, D., Stam, M., Tunstall, M.: Simulatable leakage: analysis, pitfalls, and new construction. Cryptology ePrint Archive, Report 2014/357, https://eprint.iacr.org/2014/357
  11. 11.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer (2008)Google Scholar
  12. 12.
    Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying standard differential power analysis attacks. IET Information Security 5(2), 100–110 (2011)CrossRefGoogle Scholar
  13. 13.
    Messerges, T.S., Dabbish, E., Sloan, R.H.: Power analysis attacks of modular exponentiation in smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 144–157. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
  17. 17.
  18. 18.
    Sauvage, L., Guilley, S., Flament, F., Danger, J.-L., Mathieu, Y.: Blind cartography for side channel attacks: Cross-correlation cartography. Int. J. Reconfig. Comp. 2012(15), 1–9 (2012)CrossRefGoogle Scholar
  19. 19.
    Standaert, F.-X., Pereira, O., Yu, Y.: Leakage-resilient symmetric cryptography under empirically verifiable assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 335–352. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Witteman, M.F., van Woudenberg, J.G.J., Menarini, F.: Defeating RSA multiply-always and message blinding countermeasures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 77–88. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC implementation of the AES sBoxes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 67–78. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Jake Longo
    • 1
  • Daniel P. Martin
    • 1
  • Elisabeth Oswald
    • 1
  • Daniel Page
    • 1
  • Martijin Stam
    • 1
  • Michael J. Tunstall
    • 2
  1. 1.Department of Computer ScienceUniversity of BristolBristolUnited Kingdom
  2. 2.Cryptography Research Inc.San FranciscoUnited States

Personalised recommendations