Advertisement

Using Indistinguishability Obfuscation via UCEs

  • Christina Brzuska
  • Arno Mittelbach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8874)

Abstract

We provide the first standard model construction for a powerful class of Universal Computational Extractors (UCEs; Bellare et al. Crypto 2013) based on indistinguishability obfuscation. Our construction suffices to instantiate q-query correlation-secure hash functions and to extract polynomially many hardcore bits from any one-way function.

For many cryptographic primitives and in particular for correlation-secure hash functions all known constructions are in the random-oracle model. Indeed, recent negative results by Wichs (ITCS 2013) rule out a large class of techniques to prove the security of correlation-secure hash functions in the standard model. Our construction is based on puncturable PRFs (Sahai und Waters; STOC 2014) and indistinguishability obfuscation. However, our proof also relies on point obfuscation under auxiliary inputs (AIPO). This is crucial in light of Wichs’ impossibility result. Namely, Wichs proves that it is often hard to reduce two-stage games (such as UCEs) to a “one-stage assumption” such as DDH. In contrast, AIPOs and their underlying assumptions are inherently two-stage and, thus, allow us to circumvent Wichs’ impossibility result.

Our positive result is also noteworthy insofar as Brzuska, Farshim and Mittelbach (Crypto 2014) have shown recently, that iO and some variants of UCEs are mutually exclusive. Our results, hence, validate some of the new UCE notions that emerged as a response to the iO-attack.

Keywords

Correlation-secure hash functions hardcore functions indistinguishability obfuscation differing-inputs obfuscation point-function obfuscation auxiliary-input obfuscation universal computational extractors (UCEs) 

References

  1. 1.
    Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfuscation and applications. Cryptology ePrint Archive, Report 2013/689 (2013), http://eprint.iacr.org/2013/689
  2. 2.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6:1–6:48 (2012), http://doi.acm.org/10.1145/2160158.2160159
  3. 3.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption: Definitional equivalences and constructions without random oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via uCEs. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 398–415. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Hoang, V.T., Keelveedhi, S.: Instantiating random oracles via UCEs. Cryptology ePrint Archive, Report 2013/424 (2013), http://eprint.iacr.org/2013/424
  8. 8.
    Bellare, M., Hoang, V.T., Keelveedhi, S.: Personal communication (Semptember 2013)Google Scholar
  9. 9.
    Bellare, M., Stepanovs, I., Tessaro, S.: Poly-many hardcore bits for any one-way function and a framework for differing-inputs obfuscation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Bitansky, N., Canetti, R.: On strong simulation and composable point obfuscation. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 520–537. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Bitansky, N., Paneth, O.: Point obfuscation and 3-round zero-knowledge. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 190–208. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic encryption, and efficient constructions without random oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  15. 15.
    Boyle, E., Chung, K.M., Pass, R.: On extractability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  16. 16.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer (Mar 2014)Google Scholar
  17. 17.
    Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and uCEs: The case of computationally unpredictable sources. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 188–205. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  18. 18.
    Brzuska, C., Mittelbach, A.: Indistinguishability obfuscation versus multi-bit point obfuscation with auxiliary input. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, Springer, Heidelberg (2014)Google Scholar
  19. 19.
    Brzuska, C., Mittelbach, A.: Using indistinguishability obfuscation via uces. Cryptology ePrint Archive, Report 2014/381 (2014), http://eprint.iacr.org/
  20. 20.
    Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  21. 21.
    Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press (May 1998)Google Scholar
  23. 23.
    Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions of lossy and correlation-secure trapdoor functions. Journal of Cryptology 26(1), 39–74 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption: New constructions and a connection to computational entropy. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  26. 26.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS. IEEE Computer Society Press (October 2013)Google Scholar
  27. 27.
    Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs obfuscation and extractable witness encryption with auxiliary input. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 518–535. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  28. 28.
    Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-inputs obfuscation and extractable witness encryption with auxiliary input. Cryptology ePrint Archive, Report 2013/860 (June 13, 2014), http://eprint.iacr.org/
  29. 29.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions (extended abstract). In: 25th FOCS, pp. 464–479. IEEE Computer Society Press (October 1984)Google Scholar
  30. 30.
    Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.H., Sahai, A., Shi, E., Zhou, H.S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  31. 31.
    Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  32. 32.
    Hofheinz, D.: Fully secure constrained pseudorandom functions using random oracles. Cryptology ePrint Archive, Report 2014/372 (2014), http://eprint.iacr.org/
  33. 33.
    Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: Full domain hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  34. 34.
    Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 669–684. ACM Press (November 2013)Google Scholar
  35. 35.
    Matsuda, T., Hanaoka, G.: Chosen ciphertext security via point obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 95–120. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  36. 36.
    Matsuda, T., Hanaoka, G.: Chosen ciphertext security via UCE. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 56–76. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  37. 37.
    Mittelbach, A.: Salvaging indifferentiability in a multi-stage setting. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 603–621. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  38. 38.
    Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. SIAM Journal on Computing 39(7), 3058–3088 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press (May/June 2014)Google Scholar
  40. 40.
    Wichs, D.: Barriers in cryptography with weak, correlated and leaky sources. In: Kleinberg, R.D. (ed.) ITCS 2013, pp. 111–126. ACM (January 2013)Google Scholar

Copyright information

© International Association for Cryptologic Research 2014

Authors and Affiliations

  • Christina Brzuska
    • 1
  • Arno Mittelbach
    • 2
  1. 1.Tel Aviv UniversityIsrael
  2. 2.Darmstadt University of TechnologyGermany

Personalised recommendations