FAGI: A Framework for Fusing Geospatial RDF Data

  • Giorgos Giannopoulos
  • Dimitrios Skoutas
  • Thomas Maroulis
  • Nikos Karagiannakis
  • Spiros Athanasiou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8841)

Abstract

In this paper, we present FAGI, a framework for fusing geospatial RDF data. Starting from two interlinked datasets, FAGI handles all the steps of the fusion process, producing an integrated, richer dataset that combines entities and attributes from both initial ones. In contrast to existing approaches and tools, which deal either with RDF fusion or with spatial conflation, FAGI specifically addresses the fusion of geospatial RDF data. We describe the main components of the framework and their functionalities, which include aligning dataset vocabularies, processing geospatial features, applying -manually or automatically- fusion strategies, and recommending link creation or rejection between RDF entities, with emphasis on their geospatial properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bleiholder, J., Naumann, F.: Declarative data fusion – syntax, semantics, and implementation. In: Eder, J., Haav, H.-M., Kalja, A., Penjam, J. (eds.) ADBIS 2005. LNCS, vol. 3631, pp. 58–73. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1), 1–41 (2008)CrossRefGoogle Scholar
  3. 3.
    Cobb, M.A., Chung, M.J., Miller, V., Foley III, H., Petry, F.E., Shaw, K.B.: A Rule-Based Approach for the Conflation of Attributed Vector Data. GeoInformatica 2(1), 7–35 (1998)CrossRefGoogle Scholar
  4. 4.
    Chen, C.-C., Knoblock, C.A.: Conflation of Geospatial Data. In: Encyclopedia of GIS, pp. 133–140 (2008)Google Scholar
  5. 5.
    Chen, C.-C., Shahabi, C., Knoblock, C.A., Kolahdouzan, M.: Automatically and Efficiently Matching Road Networks with Spatial Attributes in Unknown Geometry Systems. In: Proc. of the 3rd STDBM (co-located with VLDB 2006) (2006)Google Scholar
  6. 6.
  7. 7.
  8. 8.
    Knap, T., Michelfeit, J., Necasky, M.: Linked Open Data Aggregation: Conflict Resolution and Aggregate Quality. In: Proc. of the 2012 IEEE 36th Annual Computer Software and Applications Conference, pp. 106–111 (2012)Google Scholar
  9. 9.
    Michelfeit, J., Knap, T.: Linked Data Fusion in ODCleanStore. In: Proc. of the International Semantic Web Conference (Posters & Demos) (2012)Google Scholar
  10. 10.
    Mendes, P.N., Muhleisen, H., Bizer, C.: Sieve: linked data quality assessment and fusion. In: Proc. of the 2012 Joint EDBT/ICDT Workshops, pp. 116–123 (2012)Google Scholar
  11. 11.
    Ngonga Ngomo, A.-C.: Learning conformation rules for linked data integration. In: Proc. of the 7th International Workshop on Ontology Matching (2012)Google Scholar
  12. 12.
    Nikolov, A., Uren, V.S., Motta, E., De Roeck, A.: Integration of Semantically Annotated Data by the KnoFuss Architecture. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 265–274. Springer, Heidelberg (2008)Google Scholar
  13. 13.
    Open Geospatial Consortium Inc. OGC GeoSPARQL standard - A geographic query language for RDF data, https://portal.opengeospatial.org/files/?artifact_id=47664
  14. 14.
    Preparata, F., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)CrossRefGoogle Scholar
  15. 15.
    Stankutė, S., Asche, H.: An Integrative Approach to Geospatial Data Fusion. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2009, Part I. LNCS, vol. 5592, pp. 490–504. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Stankutė, S., Asche, H.: Improvement of spatial data quality using the data conflation. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part I. LNCS, vol. 6782, pp. 492–500. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Saalfeld, A.: Conflation: Automated Map Compilation. Int. J. Geogr. Inf. Sci. 2(3), 217–228 (1988)CrossRefGoogle Scholar
  18. 18.
    Schultz, A., Matteini, A., Isele, R., Mendes, P., Bizer, C., Becker, C.: LDIF-A Framework for Large-Scale Linked Data Integration. In: Proc. of the 21st International World Wide Web Conference, Developer Track (2012)Google Scholar
  19. 19.
    Ware, J.M., Jones, C.B.: Matching and Aligning Features in Overlayed Coverages. In: Proc. of the 6th ACM Symposium on Geographic Information Systems (1998)Google Scholar
  20. 20.
    Walter, V., Fritsch, D.: Matching Spatial Data Sets: a Statistical Approach. Int. J. Geogr. Inf. Sci. 5(1), 445–473 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Giorgos Giannopoulos
  • Dimitrios Skoutas
  • Thomas Maroulis
    • 1
  • Nikos Karagiannakis
  • Spiros Athanasiou
  1. 1.Imperial CollegeLondonUK

Personalised recommendations