Advertisement

Decomposing Alignment-Based Conformance Checking of Data-Aware Process Models

  • Massimiliano de Leoni
  • Jorge Munoz-Gama
  • Josep Carmona
  • Wil M. P. van der Aalst
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8841)

Abstract

Process mining techniques relate observed behavior to modeled behavior, e.g., the automatic discovery of a Petri net based on an event log. Process mining is not limited to process discovery and also includes conformance checking. Conformance checking techniques are used for evaluating the quality of discovered process models and to diagnose deviations from some normative model (e.g., to check compliance). Existing conformance checking approaches typically focus on the control-flow, thus being unable to diagnose deviations concerning data. This paper proposes a technique to check the conformance of data-aware process models. We use so-called Petri nets with Data to model data variables, guards, and read/write actions. Data-aware conformance checking problem may be very time consuming and sometimes even intractable when there are many transitions and data variables. Therefore, we propose a technique to decompose large data-aware conformance checking problems into smaller problems that can be solved more efficiently. We provide a general correctness result showing that decomposition does not influence the outcome of conformance checking. The approach is supported through ProM plug-ins and experimental results show significant performance improvements. Experiments have also been conducted with a real-life case study, thus showing that the approach is also relevant in real business settings.

Keywords

ProcessMining Conformance Checking Divide-and-Conquer Techniques Multi-Perspective Process Modelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  2. 2.
    Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Information System 33(1), 64–95 (2008)CrossRefGoogle Scholar
  3. 3.
    Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking using cost-based fitness analysis. In: Proceedings of the 15th IEEE International Enterprise Distributed Object Computing Conference (EDOC 2011), pp. 55–64. IEEE Computer Society (2011)Google Scholar
  4. 4.
    de Leoni, M., van der Aalst, W.M.P.: Aligning event logs and process models for multi-perspective conformance checking: An approach based on integer linear programming. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 113–129. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced Multi-Perspective Checking of Process Conformance. BPM Center Report BPM-14-07 (2014)Google Scholar
  6. 6.
    van der Aalst, W.M.P.: Decomposing Petri nets for process mining: A generic approach. Distributed and Parallel Databases 31(4), 471–507 (2013)CrossRefGoogle Scholar
  7. 7.
    van der Aalst, W.M.P.: Decomposing process mining problems using passages. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 72–91. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Single-entry single-exit decomposed conformance checking. Information Systems 46, 102–122 (2014)CrossRefGoogle Scholar
  9. 9.
    Montali, M., Chesani, F., Mello, P., Maggi, F.M.: Towards data-aware constraints in declare. In: Shin, S.Y., Maldonado, J.C. (eds.) SAC, pp. 1391–1396. ACM (2013)Google Scholar
  10. 10.
    Jensen, K., Kristensen, L.: Coloured Petri Nets. Springer (2009)Google Scholar
  11. 11.
    Polyvyanyy, A.: Structuring process models. PhD thesis, University of Potsdam (2012)Google Scholar
  12. 12.
    Dumas, M., García-Bañuelos, L., Polyvyanyy, A.: Unraveling unstructured process models. In: Mendling, J., Weidlich, M., Weske, M. (eds.) BPMN 2010. LNBIP, vol. 67, pp. 1–7. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data Knowl. Eng. 68(9), 793–818 (2009)CrossRefGoogle Scholar
  14. 14.
    Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the refined process structure tree. In: Bravetti, M. (ed.) WS-FM 2010. LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    de Leoni, M., Munoz-Gama, J., Carmona, J., van der Aalst, W.M.P.: Decomposing Conformance Checking on Petri Nets with Data. BPM Center Report BPM-14-06 (2014)Google Scholar
  16. 16.
    Munoz-Gama, J., Carmona, J.: A General Framework for Precision Checking. International Journal of Innovative Computing, Information and Control (IJICIC) 8(7B), 5317–5339 (2012)Google Scholar
  17. 17.
    De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Information System 37(7), 654–676 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Massimiliano de Leoni
    • 1
  • Jorge Munoz-Gama
    • 2
  • Josep Carmona
    • 2
  • Wil M. P. van der Aalst
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations