Semantic Representation and Computation of Cloud-Based Customer Relationship Management Solutions

  • Ricardo Colomo-Palacios
  • José María Álvarez Rodríguez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8842)


This paper introduces a RDF vocabulary to semantically represent and compute quantitative indexes with the aim of providing a context-aware system to manage Customer Relationship Management (CRM) quality indicators. This tool is based on CRM Index, tailor made index based on Service Measurement Index to measure cloud CRM solutions. Apart from the tool itself, in the paper the authors introduce categories and attributes defined for the CRM world along with specific metrics.


Customer Relationship Management Vendor Selection Quantitative Composite Index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee, Y.-C., Tang, N.-H., Sugumaran, V.: Open Source CRM Software Selection using the Analytic Hierarchy Process. Inf. Syst. Manag. 31, 2–20 (2014)CrossRefGoogle Scholar
  2. 2.
    Correia, J., Thompson, E., Dharmasthira, Y.: Market Trends: CRM Digital Initiatives Focus on Sales, Marketing, Support and E-Commerce. Gartner Inc. (2014)Google Scholar
  3. 3.
    Bibi, S., Katsaros, D., Bozanis, P.: Business Application Acquisition: On-Premise or SaaS-Based Solutions? IEEE Softw. 29, 86–93 (2012)CrossRefGoogle Scholar
  4. 4.
    Friedrich, I., Kosch, L., Breitner, M.H.: A practical test of a process model for customer relationship management system selection with an automotive supplier. In: Proc. ECIS 2012 (2012)Google Scholar
  5. 5.
    Hsu, P.-F., Lan, K.-Y., Tsai, C.-W.: Selecting the Optimal Vendor of Customer Relationship Management System for Medical Tourism Industry Using Delphi and AHP. Int. J. Enterp. Inf. Syst. 9, 62–75 (2013)CrossRefGoogle Scholar
  6. 6.
    Colomo-Palacios, R., Gómez-Berbís, J.M., García-Crespo, Á.: An integrated methodology for customer relationship management customization. JISTEM - J. Inf. Syst. Technol. Manag. 4, 287–300 (2007)Google Scholar
  7. 7.
    Saaty, T.L.: A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15, 234–281 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Wind, Y., Saaty, T.L.: Marketing Applications of the Analytic Hierarchy Process. Manag. Sci. 26, 641–658 (1980)CrossRefGoogle Scholar
  9. 9.
    Chen, M.K., Wang, S.-C.: The critical factors of success for information service industry in developing international market: Using analytic hierarchy process (AHP) approach. Expert Syst. Appl. 37, 694–704 (2010)CrossRefGoogle Scholar
  10. 10.
    Subramanian, N., Ramanathan, R.: A review of applications of Analytic Hierarchy Process in operations management. Int. J. Prod. Econ. 138, 215–241 (2012)CrossRefGoogle Scholar
  11. 11.
    Jadhav, A.S., Sonar, R.M.: Framework for evaluation and selection of the software packages: A hybrid knowledge based system approach. J. Syst. Softw. 84, 1394–1407 (2011)CrossRefGoogle Scholar
  12. 12.
    Jadhav, A.S., Sonar, R.M.: Evaluating and selecting software packages: A review. Inf. Softw. Technol. 51, 555–563 (2009)CrossRefGoogle Scholar
  13. 13.
    Kahraman, C., Beskese, A., Kaya, I.: Selection among ERP outsourcing alternatives using a fuzzy multi-criteria decision making methodology. Int. J. Prod. Res. 48, 547–566 (2010)CrossRefzbMATHGoogle Scholar
  14. 14.
    Karaarslan, N., Gundogar, E.: An application for modular capability-based ERP software selection using AHP method. Int. J. Adv. Manuf. Technol. 42, 1025–1033 (2009)CrossRefGoogle Scholar
  15. 15.
    Garg, S.K., Versteeg, S., Buyya, R.: A framework for ranking of cloud computing services. Future Gener. Comput. Syst. 29, 1012–1023 (2013)CrossRefGoogle Scholar
  16. 16.
    Kim, H.-S., Kim, Y.-G.: A CRM performance measurement framework: Its development process and application. Ind. Mark. Manag. 38, 477–489 (2009)CrossRefGoogle Scholar
  17. 17.
    Colombo, E., Francalanci, C.: Selecting CRM packages based on architectural, functional, and cost requirements: Empirical validation of a hierarchical ranking model. Requir. Eng. 9, 186–203 (2004)CrossRefGoogle Scholar
  18. 18.
    Öztayşi, B., Kaya, T., Kahraman, C.: Performance comparison based on customer relationship management using analytic network process. Expert Syst. Appl. 38, 9788–9798 (2011)CrossRefGoogle Scholar
  19. 19.
    Käfer, T., Abdelrahman, A., Umbrich, J., O’Byrne, P., Hogan, A.: Observing Linked Data Dynamics. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 213–227. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    CSMIC: Service Measurement Index Framework Version 2.0 (2014),
  21. 21.
    ur Rehman, Z., Hussain, O.K., Hussain, F.K.: Parallel Cloud Service Selection and Ranking Based on QoS History. Int. J. Parallel Program. 42, 820–852 (2014)CrossRefGoogle Scholar
  22. 22.
    Kourtesis, D., Alvarez Rodríguez, J.M., Paraskakis, I.: Semantic-based QoS management in Cloud Systems: Current Status and Future Challenges. Future Gener. Comput. Syst. (2014)Google Scholar
  23. 23.
    Cyganiak, R., Reynolds, D.: The RDF Data Cube Vocabulary. W3C (2013)Google Scholar
  24. 24.
    Hausenblas, M., Halb, W., Raimond, Y., Feigenbaum, L., Ayers, D.: SCOVO: Using Statistics on the Web of Data. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 708–722. Springer, Heidelberg (2009)Google Scholar
  25. 25.
    Zapilko, B., Mathiak, B.: Defining and Executing Assessment Tests on Linked Data for Statistical Analysis. COLD (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ricardo Colomo-Palacios
    • 1
  • José María Álvarez Rodríguez
    • 2
  1. 1.Faculty of Computer SciencesØstfold University CollegeHaldenNorway
  2. 2.Computer Science DepartmentUniversidad Carlos III de MadridLeganés, MadridSpain

Personalised recommendations