Automatic Camera Control: A Dynamic Multi-Objective Perspective

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8602)

Abstract

Automatically generating computer animations is a challenging and complex problem with applications in games and film production. In this paper, we investigate how to translate a shot list for a virtual scene into a series of virtual camera configurations — i.e automatically controlling the virtual camera. We approach this problem by modelling it as a dynamic multi-objective optimisation problem and show how this metaphor allows a much richer expressiveness than a classical single objective approach. Finally, we showcase the application of a multi-objective evolutionary algorithm to generate a shot for a sample game replay and we analyse the results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bares, W.H., McDermott, S., Boudreaux, C., Thainimit, S.: Virtual 3D camera composition from frame constraints. In: ACM Multimedia, pp. 177–186. ACM Press, Marina del Rey (2000)Google Scholar
  2. 2.
    Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)CrossRefMATHGoogle Scholar
  3. 3.
    Beume, N., Naujoks, B., Preuss, M., Rudolph, G., Wagner, T.: Effects of 1-Greedy-Metric-Selection on Innumerably Large Pareto Fronts. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 21–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Bourne, O., Sattar, A., Goodwin, S.: A Constraint-Based Autonomous 3D Camera System. Journal of Constraints 13(1–2), 180–205 (2008)CrossRefMATHGoogle Scholar
  5. 5.
    Burelli, P.: Interactive Virtual Cinematography. PhD thesis, IT University of Copenhagen (2012)Google Scholar
  6. 6.
    Burelli, P., Di Gaspero, L., Ermetici, A., Ranon, R.: Virtual Camera Composition with Particle Swarm Optimization. In: Butz, A., Fisher, B., Krüger, A., Olivier, P., Christie, M. (eds.) SG 2008. LNCS, vol. 5166, pp. 130–141. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Burelli, P., Jhala, A.: Dynamic Artificial Potential Fields for Autonomous Camera Control. In: AAAI Conference on Artificial Intelligence in Interactive Digitale Entertainment Conference. AAAI, Palo Alto (2009)Google Scholar
  8. 8.
    Cheong, Y.-G., Jhala, A., Bae, B.-C., Young, R.M.: Automatically Generating Summary Visualizations from Game Logs. In: AAAI Conference on Artificial Intelligence in Interactive Digitale Entertainment, pp. 167–172 (2008)Google Scholar
  9. 9.
    Christie, M., Olivier, P., Normand, J.-M.: Camera Control in Computer Graphics. Computer Graphics Forum 27, 2197–2218 (2008)CrossRefGoogle Scholar
  10. 10.
    Deb, R., Pratap, R., Agarwal, S.: A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6(8) (2002)Google Scholar
  11. 11.
    Dominguez, M., Young, R.M., Roller, S.: Design and Evaluation of Afterthought, A System that Automatically Creates Highlight Cinematics for 3D Games. In: AAAI Conference on Artificial Intelligence in Interactive Digitale Entertainment (2011)Google Scholar
  12. 12.
    Drucker, S.M., Zeltzer, D.: Intelligent camera control in a virtual environment. In: Graphics Interface, pp. 190–199 (1994)Google Scholar
  13. 13.
    Jardillier, F., Languénou, E.: Screen-Space Constraints for Camera Movements: the Virtual Cameraman. Computer Graphics Forum 17(3), 175–186 (1998)CrossRefGoogle Scholar
  14. 14.
    Lowood, H.: High-performance play: The making of machinima. Journal of Media Practice 7(1), 25–42 (2006)CrossRefGoogle Scholar
  15. 15.
    Olivier, P., Halper, N., Pickering, J., Luna, P.: Visual Composition as Optimisation. In: Artificial Intelligence and Simulation of Behaviour (1999)Google Scholar
  16. 16.
    Phillips, C.B., Badler, N.I., Granieri, J.: Automatic viewing control for 3D direct manipulation. In: ACM SIGGRAPH Symposium on Interactive 3D Graphics, pp. 71–74. ACM Press, Cambridge (1992)Google Scholar
  17. 17.
    Pickering, J.: Intelligent Camera Planning for Computer Graphics. PhD thesis, University of York (2002)Google Scholar
  18. 18.
    Pontriagin, L.S.: Mathematical Theory of Optimal Processes. Interscience Publishers (1962)Google Scholar
  19. 19.
    Sarker, R., Coello, C.A.C.: Assessment methodologies for multiobjective evolutionary algorithms. In: Evolutionary Optimization. International Series in Operations Research & Management Science, vol. 48, pp. 177–195. Springer, US (2002)Google Scholar
  20. 20.
    Togelius, J., Preuss, M., Beume, N., Wessing, S., Hagelbäck, J., Yannakakis, G.N., Grappiolo, C.: Controllable procedural map generation via multiobjective evolution. Genetic Programming and Evolvable Machines 14(2), 245–277 (2013)CrossRefGoogle Scholar
  21. 21.
    Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary computation and convergence to a pareto front. In: Koza, J.R. (ed.) Late Breaking Papers at the Genetic Programming 1998 Conference. Stanford University Bookstore (1998)Google Scholar
  22. 22.
    Ware, C., Osborne, S.: Exploration and virtual camera control in virtual three dimensional environments. ACM SIGGRAPH 24(2), 175–183 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Architecture, Design and Media TechnologyAalborg University CopenhagenCopenhagenDenmark
  2. 2.European Research Center for Information Systems (ERCIS)Westfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations