Advertisement

Theoretical Modeling of the Optical and Electrical Processes in Polymeric Solar Cells

  • Zhigang ShuaiEmail author
  • Lingyi Meng
  • Yuqian Jiang
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 130)

Abstract

The elementary processes occurred in organic solar cell include optical absorption, excitation energy transfer, photoinduced charge transfer, charge transport, and charge collection at the electrodes. Even though modern quantum chemistry has achieved great success in electronic structure calculations, it is still not enough to describe these elementary processes at first-principles. We describe in this chapter our recent progresses toward quantitative theoretical understanding of the optical and electronic processes in organic photovoltaic materials, including optical absorption and emission spectra for conjugated oligomers, energy transfer in polymers, charge transport in organic semiconductors, and device modeling of heterojunction solar cells based on dynamic Monte Carlo simulation and the continuum model.

Keywords

Solar Cell Power Conversion Efficiency Charge Mobility Organic Solar Cell Polymer Solar Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are indebted to Dr. Qian Peng and Dr. Yingli Niu for their contributions in the study of optical absorption/emission spectra and the excited state decays, and to Dr. Yuan Shang for his contribution to the continuum device model. The research in Shuai’s group has been funded the National Natural Science Foundation of China, the Ministry of Science and Technology of China, and the Chinese Academy of Sciences.

References

  1. 1.
    M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd edn. (Oxford University Press, New York, 1999)Google Scholar
  2. 2.
    E. Silinsh, V. Capek, Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena (American Institute of Physics, New York, 1994)Google Scholar
  3. 3.
    H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Chem. Commun. 578, (1977)Google Scholar
  4. 4.
    W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979)Google Scholar
  5. 5.
    J.L. Bredas, C. Adant, P. Tackx, A. Persoons, Chem. Rev. 94, 243 (1994)Google Scholar
  6. 6.
    J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burns, A.B. Holmes, Nature 347, 539 (1990)Google Scholar
  7. 7.
    G. Gustafsson, Y. Cao, G.M. Treacy, F. Klavetter, N. Colaneri, A.J. Heeger, Nature 357, 477 (1992)Google Scholar
  8. 8.
    F. Hide, M.A. Diaz-Garcia, B.J. Schwartz, M.R. Andersson, Q.B. Pei, A.J. Heeger, Science 273, 1833 (1996)Google Scholar
  9. 9.
    N. Tessler, G.J. Denton, R.H. Friend, Nature 382, 695 (1996)Google Scholar
  10. 10.
    S.V. Frolov, W. Gellemann, M. Ozaki, K. Yoshino, Z.V. Vardeny, Phys. Rev. Lett. 78, 729 (1997)Google Scholar
  11. 11.
    G. Horowitz, Adv. Mater. 10, 365 (1998)Google Scholar
  12. 12.
    H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, D.M. de Leeuw, Nature 401, 685 (1999)Google Scholar
  13. 13.
    L. Kergoat, B. Piro, M. Berggren, G. Horowitz, M.C. Pham, Anal. Bioanal. Chem. 402, 1813 (2012)Google Scholar
  14. 14.
    C. Brabec, V. Dyakonov, J. Parisi, N.S. Sariciftci (eds.), Organic Photovoltaics (Springer, Berlin, 2003)Google Scholar
  15. 15.
    R.E. Peierls, Quantum Theory of Solids (Oxford University Press, London, 1955)Google Scholar
  16. 16.
    A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.P. Su, Rev. Mod. Phys. 60, 781 (1988)Google Scholar
  17. 17.
    S.R. Marder, C.B. Gorman, F. Meyers, J.W. Perry, G. Bourhill, J.L. Bredas, B.M. Pierce, Science 265, 632 (1994)Google Scholar
  18. 18.
    D. Moses, J. Wang, A.J. Heeger, N. Kirova, S. Brazovskii, Proc. Natl. Acad. Sci. U.S.A. 98, 13496 (2001)Google Scholar
  19. 19.
    I. Hwang, G.D. Scholes, Chem. Mater. 23, 610 (2011)Google Scholar
  20. 20.
    H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater. 11, 605 (1999)Google Scholar
  21. 21.
    G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789 (1995)Google Scholar
  22. 22.
    N. Banerji, S. Cowan, M. Leclerc, E. Vauthey, A.J. Heeger, J. Am. Chem. Soc. 132, 17459 (2010)Google Scholar
  23. 23.
    V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, J.L. Bredas, Chem. Rev. 107, 926 (2007)Google Scholar
  24. 24.
    V. Lemaur, M. Steel, D. Beljonne, J.L. Bredas, J. Cornil, J. Am. Chem. Soc. 127, 6077 (2005)Google Scholar
  25. 25.
    Y.P. Yi, V. Coropceanu, J.L. Bredas, J. Am. Chem. Soc. 131, 15777 (2009)Google Scholar
  26. 26.
    J.L. Bredas, J.E. Norton, J. Cornil, V. Coropceanu, Acc. Chem. Res. 42, 1691 (2009)Google Scholar
  27. 27.
    H. Bassler, Phys. Status Solidi B. 175, 15 (1993)Google Scholar
  28. 28.
    P.W.M. Blom, M.J.M. de Jong, J.J.M. Vleggaar, Appl. Phys. Lett. 68, 3308 (1996)Google Scholar
  29. 29.
    C. Tanase, E.J. Meijer, P.W.M. Blom, D.M. de Leeuw, Phys. Rev. Lett. 91, 216601 (2003)Google Scholar
  30. 30.
    N. Vukmirovic, L.W. Wang, Nanolett. 9, 3996 (2010)Google Scholar
  31. 31.
    P. Prins, F.C. Grozema, J.M. Schins, S. Patil, U. Scherf, L.D.A. Siebeles, Phys. Rev. Lett. 96, 146601 (2006)Google Scholar
  32. 32.
    R.A. Street, J.E. Northrup, A. Salleo, Phys. Rev. B. 71, 165202 (2005)Google Scholar
  33. 33.
    H. Sirringhaus, Adv. Mater. 17, 2411 (2005)Google Scholar
  34. 34.
    H. Yan, Z. Chen, Y. Zheng, C. Newman, J. Quinn, F. Dotz, M. Kastler, A. Facchetti, Nature 457, 679 (2009)Google Scholar
  35. 35.
    H.N. Tsao, D.M. Cho, I. Park, M.R. Hansen, A. Mavrinskiy, D.Y. Yoon, R. Graf, W. Pisula, H.W. Spiess, K. Muellen, J. Am. Chem. Soc. 133, 2605 (2011)Google Scholar
  36. 36.
    L.J. Wang, G.J. Nan, X.D. Yang, Q. Peng, Q.K. Li, Z.G. Shuai, Chem. Soc. Rev. 39, 423 (2010)Google Scholar
  37. 37.
    Z.G. Shuai, L.J. Wang, Q.K. Li, Adv. Mater. 23, 1145 (2011)Google Scholar
  38. 38.
    A. Troisi, Chem. Soc. Rev. 40, 2347 (2011)Google Scholar
  39. 39.
    S. Staftstrom, Chem. Soc. Rev. 39, 2484 (2010)Google Scholar
  40. 40.
    R. Ianconescu, E. Pollak, J. Phys. Chem. 108, 7778 (2004)Google Scholar
  41. 41.
    A.M. Mebel, M. Hayashi, K.K. Liang, S.H. Lin, J. Phys. Chem. A 103, 10674 (1999)Google Scholar
  42. 42.
    Y.L. Niu, Q. Peng, C.M. Deng, X. Gao, Z.G. Shuai, J. Phys. Chem. A 114, 7817 (2010)Google Scholar
  43. 43.
    C. Eckart, Phys. Rev. 47, 552 (1935)Google Scholar
  44. 44.
    Q. Peng, Y.P. Yi, Z.G. Shuai, J.S. Shao, J. Chem. Phys. 126, 114302 (2007)Google Scholar
  45. 45.
    Y.L. Niu, Q. Peng, Z.G. Shuai, Sci. China Ser. B- Chem. 51, 1153 (2008)Google Scholar
  46. 46.
    M. Hayashi, A.M. Mebel, K.K. Liang, S.H. Lin, J. Chem. Phys. 108, 2044 (1998)Google Scholar
  47. 47.
    J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Science 2007(317), 222 (2007)Google Scholar
  48. 48.
    N. Blouin, A. Michaud, M. Leclerc, Adv. Mater. 19, 2295 (2007)Google Scholar
  49. 49.
    J. Hou, L.J. Huo, C. He, C.H. Yang, Y.F. Li, Macromolecule 39, 4657 (2006)Google Scholar
  50. 50.
    I.W. Hwang, Q.H. Xu, C. Soci, B. Chen, A.K.Y. Jen, D. Moses, A.J. Heeger, Adv. Funct. Mater. 17, 563 (2007)Google Scholar
  51. 51.
    B.S. Hudson, B.E. Kohler, E.C. Lim (eds.), Excited States (Academic, New York, 1973)Google Scholar
  52. 52.
    Z. Shuai, J.L. Bredas, S.K. Pati, S. Ramasesha, Phys. Rev. B 56, 9298 (1997)Google Scholar
  53. 53.
    J.W.Y. Lam, B.Z. Tang, J. Polym. Sci. Part A Polym. Chem. 41, 2607 (2003)Google Scholar
  54. 54.
    I. Gontia, S.V. Frolov, M. Liess, E. Ehrenfreund, Z.V. Vardeny, Phys. Rev. Lett. 82, 4058 (1999)Google Scholar
  55. 55.
    D. Beljonne, Z.G. Shuai, L. Serrano-Andres, J.L. Bredas, Chem. Phys. Lett. 279, 1 (1997)Google Scholar
  56. 56.
    L.P. Chen, X.J. Hou, L.Y. Zhu, S.W. Yin, Z.G. Shuai, J. Theo, Comput. Chem. 5, 391 (2006)Google Scholar
  57. 57.
    Q. Peng, Y.L. Niu, Y.Q. Jiang, Y. Li, Z.H. Wang, Z.G. Shuai, J. Chem. Phys. 134, 074510 (2011)Google Scholar
  58. 58.
    Y.Q. Jiang, Q. Peng, X. Gao, Z.G. Shuai, Y.L. Niu, S.H. Lin, J. Mater. Chem. 22, 4491 (2012)Google Scholar
  59. 59.
    A.I. Krylov, Chem. Phys. Lett. 338, 375 (2001)Google Scholar
  60. 60.
    O.V. Greitsenko, E.J. Baerends, Phys. Chem. Chem. Phys. 11, 4640 (2009)Google Scholar
  61. 61.
    S. Grimme, M. Waletzke, J. Chem. Phys. 111, 5645 (1999)Google Scholar
  62. 62.
    M. Liess, S. Jeglinski, P.A. Lane, Z.V. Vardeny, Synth. Met. 84, 891 (1997)Google Scholar
  63. 63.
    L. Huo, T.L. Chen, Y. Zhou, J. Hou, H.-Y. Chen, Y. Yang, Y. Li, Macromolecules 42, 4377 (2009)Google Scholar
  64. 64.
    J. Gierschner, H.-G. Mack, L. Luer, D. Oelkrug, J. Chem. Phys. 116, 8596 (2002)Google Scholar
  65. 65.
    Z.G. Shuai, L.J. Wang, C.C. Song, Theory of Charge Transport in Carbon Electronic Materials (Springer, Heidelberg, 2012)Google Scholar
  66. 66.
    H. Wiesenhofer, D. Beljonne, G.D. Scholes, E. Hennebicq, J.L. Brédas, E. Zojer, Adv. Funct. Mater. 15, 155 (2005)Google Scholar
  67. 67.
    B.P. Krueger, G.D. Scholes, G.R. Fleming, J. Phys. Chem. B. 102, 5378 (1998)Google Scholar
  68. 68.
    D. Beljonne, J. Cornil, R.J. Silbey, P. Millié, J.L. Brédas, J. Chem. Phys. 112, 4749 (2000)Google Scholar
  69. 69.
    S. Athanasopoulos, E. Hennebicq, D. Beljonne, A.B. Walker, J. Phys. Chem. C 112, 11532 (2008)Google Scholar
  70. 70.
    E. Hennebicq, G. Pourtois, G.D. Scholes, L.M. Herz, D.M. Russell, C. Silva, S. Setayesh, A.C. Grimsdale, K. Müllen, J.L. Brédas, D. Beljonne, J. Am. Chem. Soc. 127, 4744 (2005)Google Scholar
  71. 71.
    G.D. Scholes, Ann. Rev. Phys. Chem. 54, 57 (2003)Google Scholar
  72. 72.
    C.P. Hsu, P.J. Walla, M. Head-Gordon, G.R. Fleming, J. Phys. Chem. B 105, 11016 (2001)Google Scholar
  73. 73.
    C.P. Hsu, Z.Q. You, H.C. Chen, J. Phys. Chem. C 112, 1204 (2008)Google Scholar
  74. 74.
    C.P. Hsu, Acc. Chem. Res. 42, 509 (2009)Google Scholar
  75. 75.
    L.J.A. Koster, E.C.P. Smits, V.D. Mihailetchi, P.W.M. Blom, Phys. Rev. B 72, 085205 (2005)Google Scholar
  76. 76.
    P.K. Watkins, A.B. Walker, G.L.B. Verschoor, Nano Lett. 5, 1814 (2005)Google Scholar
  77. 77.
    D.T. Gillespie, J. Comput. Phys. 22, 403 (1976)Google Scholar
  78. 78.
    L.Y. Meng, Y. Shang, Q.K. Li, Y.F. Li, X.W. Zhan, Z.G. Shuai, R.G.E. Kimber, A.B. Walker, J. Phys. Chem. B 114, 36 (2010)Google Scholar
  79. 79.
    F. Yang, S.R. Forrest, ACS Nano 2, 1022 (2008)Google Scholar
  80. 80.
    L.Y. Meng, D. Wang, Q.K. Li, Y.P. Yi, J.L. Bredas, Z.G. Shuai, J. Chem. Phys. 134, 124102 (2011)Google Scholar
  81. 81.
    A.P.J. Jansen, Comput. Phys. Commun. 86, 1 (1996)Google Scholar
  82. 82.
    J.J. Lukkien, J.P.L. Segers, P.A.J. Hilbers, R.J. Gelten, A.P.J. Jansen, Phys. Rev. E 58, 2598 (1998)Google Scholar
  83. 83.
    R.A. Marsh, C. Groves, N.C. Greenham, J. Appl. Phys. 101, 083509 (2007)Google Scholar
  84. 84.
    X. Zhan, Z.A. Tan, B. Domercq, Z. An, X. Zhang, S. Barlow, Y. Li, D. Zhu, B. Kippelen, S.R. Marder, J. Am. Chem. Soc. 129, 7246 (2007)Google Scholar
  85. 85.
    J. Hou, Z.A. Tan, Y. Yan, C. He, C.H. Yang, Y. Li, J. Am. Chem. Soc. 128, 4911 (2006)Google Scholar
  86. 86.
    R.A. Marcus, Rev. Mod. Phys. 65, 599 (1990)Google Scholar
  87. 87.
    U. Wolf, V.I. Arkhipov, H. Baessler, Phys. Rev. B 59, 7507 (1999)Google Scholar
  88. 88.
    V.I. Arkhipov, U. Wolf, H. Bässler, Phys. Rev. B 59, 7514 (1999)Google Scholar
  89. 89.
    S. Barth, U. Wolf, H. Bässler, Phys. Rev. B 60, 8791 (1999)Google Scholar
  90. 90.
    H.K. Gummel, IEEE Trans. Electron Devices 11, 455 (1964)Google Scholar
  91. 91.
    M. Riede, T. Mueller, W. Tress, R. Schueppel, K. Leo, Nanotechnology 19, 424001 (2008)Google Scholar
  92. 92.
    L.J.A. Koster, V.D. Mihailetchi, R. Ramaker, P.W.M. Blom, Appl. Phys. Lett. 86, 123509 (2005)Google Scholar
  93. 93.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)Google Scholar
  94. 94.
    Y. Shang, Q. Li, L. Meng, D. Wang, Z. Shuai, Appl. Phys. Lett. 97, 143511 (2010)Google Scholar
  95. 95.
    M. Casalegno, G. Raos, R. Po, J. Chem. Phys. 132, 094705 (2010)Google Scholar
  96. 96.
    M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Adv. Mater. 18, 789 (2006)Google Scholar
  97. 97.
    S. Selberherr, Analysis and Simulation of Semiconductor Devices (Spinger, New York, 1984)Google Scholar
  98. 98.
    B.K. Crone, P.S. Davids, I.H. Campbell, D.L. Smith, J. Appl. Phys. 87, 1974 (2000)Google Scholar
  99. 99.
    B. Ruhstaller, S.A. Carter, S. Barth, H. Riel, W. Riess, J.C. Scott, J. Appl. Phys. 89, 4575 (2001)Google Scholar
  100. 100.
    J.A. Barker, C.M. Ramsdale, N.C. Greenham, Phys. Rev. B 67, 075205 (2003)Google Scholar
  101. 101.
    G.A. Buxton, N. Clarke, Phys. Rev. B 74, 085207 (2006)Google Scholar
  102. 102.
    I. Hwang, N.C. Greenham, Nanotechnology 19, 424012 (2008)Google Scholar
  103. 103.
    K. Maturova, M. Kemerink, M.M. Wienk, D.S.H. Charrier, R.A.J. Janssen, Adv. Funct. Mater. 19, 1379 (2009)Google Scholar
  104. 104.
    K. Maturova, S.S. van Bavel, M.M. Wienk, R.A.J. Janssen, M. Kemerink, Nano Lett. 9, 3032 (2009)Google Scholar
  105. 105.
    I. Hwang, C.R. McNeil, N.C. Greenham, J. Appl. Phys. 106, 094506 (2009)Google Scholar
  106. 106.
    K. Maturova, R.A.J. Janssen, M. Kemerink, ACS Nano 4, 1385 (2010)Google Scholar
  107. 107.
    J.T. Shieh, C.H. Liu, H.F. Meng, S.R. Tseng, Y.C. Chao, S.F. Horng, J. Appl. Phys. 107, 084503 (2010)Google Scholar
  108. 108.
    Y.M. Nam, J. Huh, W.J. Jo, Sol. Energy Mater. Sol. Cells. 94, 1118 (2010)Google Scholar
  109. 109.
    C.L. Braun, J. Chem. Phys. 80, 4157 (1984)Google Scholar
  110. 110.
    L. Onsager, J. Chem. Phys. 2, 599 (1934)Google Scholar
  111. 111.
    M. Wojcik, M. Tachiya, J. Chem. Phys. 130, 104107 (2009)Google Scholar
  112. 112.
    P. Langevin, Ann. Chim. Phys. 28, 433 (1903)Google Scholar
  113. 113.
    L.J.A. Koster, V.D. Mihailetchi, P.W.M. Blom, Appl. Phys. Lett. 88, 052104 (2006)Google Scholar
  114. 114.
    G.J. Adriaenssens, V.I. Arkhipov, Solid State Commun. 103, 541 (1997)Google Scholar
  115. 115.
    C. Deibel, A. Wagenpfahl, V. Dyakonov, Phys. Rev. B 80, 075203 (2009)Google Scholar
  116. 116.
    G. Juska, K. Genevicius, N. Nekrasas, G. Sliauzys, R. Osterbacka, Appl. Phys. Lett. 95, 013303 (2009)Google Scholar
  117. 117.
    M. Hilczer, M. Tachiya, J. Phys. Chem. C 114, 6808 (2010)Google Scholar
  118. 118.
    J. Williams, A.B. Walker, Nanotechnology 19, 424011 (2008)Google Scholar
  119. 119.
    S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Nat. Photonics 3, 297 (2009)Google Scholar
  120. 120.
    S. Wakim, S. Beaupre, N. Blouin, B.R. Aich, S. Rodman, R. Gaudiana, Y. Tao, M. Leclerc, J. Mater. Chem. 19, 5351 (2009)Google Scholar
  121. 121.
    C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, J.C. Hummelen, Adv. Funct. Mater. 11, 374 (2001)Google Scholar
  122. 122.
    T. Tromholt, E.A. Katz, B. Hirsch, A. Vossier, F.C. Krebs, Appl. Phys. Lett. 96, 073501 (2010)Google Scholar
  123. 123.
    M.M. Mandoc, L.J.A. Koster, P.W.M. Blom, Appl. Phys. Lett. 90, 133504 (2007)Google Scholar
  124. 124.
    C. Deibel, A. Wagenpfahl, V. Dyakonov, Phys. Status Solidi-Rapid. Res. Lett. 2, 175 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of ChemistryTsinghua UniversityBeijingChina
  2. 2.Collaborative Innovation Center of Chemistry for Energy MaterialsXiamen UniversityXiamenChina

Personalised recommendations