Matching of Events and Activities - An Approach Based on Constraint Satisfaction

  • Thomas Baier
  • Andreas Rogge-Solti
  • Mathias Weske
  • Jan Mendling
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 197)

Abstract

Nowadays, business processes are increasingly supported by IT systems that produce massive amounts of event data during the execution of a process. This event data can be used to analyze the process using process mining techniques to discover the real process, measure conformance to a given process model, or to enhance existing models with performance information. While it is essential to map the produced events to activities of a given process model for conformance analysis and process model annotation, it is also an important step for the straightforward interpretation of process discovery results. In order to accomplish this mapping with minimal manual effort, we developed a semi-automatic approach that maps events to activities by transforming the mapping problem into the optimization of a constraint satisfaction problem. The approach uses log-replay techniques and has been evaluated using a real process collection from the financial services and telecommunication domains. The evaluation results demonstrate the robustness of the approach towards non-conformant execution and that the technique is able to efficiently reduce the number of possible mappings.

Keywords

Process Mining Event Mapping Business Process Intelligence Constraint Satisfaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  2. 2.
    Baier, T., Mendling, J., Weske, M.: Bridging abstraction layers in process mining. Information Systems (2014)Google Scholar
  3. 3.
    Li, J., Bose, R.P.J.C., van der Aalst, W.M.P.: Mining context-dependent and interactive business process maps using execution patterns. In: Muehlen, M.z., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66, pp. 109–121. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Pérez-Castillo, R., Weber, B., de Guzmán, I.G.R., Piattini, M., Pinggera, J.: Assessing event correlation in non-process-aware information systems. Software and Systems Modeling, 1–23 (2012)Google Scholar
  5. 5.
    Rozsnyai, S., Slominski, A., Lakshmanan, G.T.: Discovering event correlation rules for semi-structured business processes. In: Proceedings of the 5th ACM International Conference on Distributed Event-based System, pp. 75–86 (2011)Google Scholar
  6. 6.
    Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Freuder, E., Mackworth, A.: Constraint satisfaction: An emerging paradigm. In: Handbook of Constraint Programming. Foundations of Artificial Intelligence, vol. 2, pp. 13–27. Elsevier (2006)Google Scholar
  8. 8.
    van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Lohmann, N., Verbeek, E., Dijkman, R.M.: Petri net transformations for business processes - a survey. T. Petri Nets and Other Models of Concurrency 2, 46–63 (2009)CrossRefGoogle Scholar
  10. 10.
    Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on demand: Instantaneous soundness checking of industrial business process models. Data & Knowledge Engineering 70(5), 448–466 (2011)CrossRefGoogle Scholar
  11. 11.
    Günther, C.W., van der Aalst, W.M.P.: Mining activity clusters from low-level event logs. In: BETA Working Paper Series. Volume WP 165, Eindhoven University of Technology (2006)Google Scholar
  12. 12.
    Günther, C.W., Rozinat, A., van der Aalst, W.M.P.: Activity mining by global trace segmentation. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 128–139. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Cook, D.J., Krishnan, N.C., Rashidi, P.: Activity discovery and activity recognition: A new partnership. IEEE T. Cybernetics 43(3), 820–828 (2013)CrossRefGoogle Scholar
  14. 14.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity of Business Process Models: Metrics and Evaluation. Information Systems 36(2), 498–516 (2011)CrossRefGoogle Scholar
  16. 16.
    Weidlich, M., Dijkman, R., Mendling, J.: The iCoP framework: Identification of correspondences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R., Stuckenschmidt, H.: Probabilistic optimization of semantic process model matching. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 319–334. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing recall of process model matching by improved activity label matching. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 211–218. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer (2007)Google Scholar
  20. 20.
    Weidlich, M., Dijkman, R., Weske, M.: Behaviour equivalence and compatibility of business process models with complex correspondences. The Computer Journal 55(11), 1398–1418 (2012)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Thomas Baier
    • 1
  • Andreas Rogge-Solti
    • 2
  • Mathias Weske
    • 1
  • Jan Mendling
    • 2
  1. 1.Hasso Plattner InstituteUniversity of PotsdamPotsdamGermany
  2. 2.Wirtschaftsuniversität WienViennaAustria

Personalised recommendations