Ensemble Learning of Run-Time Prediction Models for Data-Intensive Scientific Workflows

  • David A. Monge
  • Matĕj Holec
  • Filip Z̆elezný
  • Carlos García Garino
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 485)

Abstract

Workflow applications for in-silico experimentation involve the processing of large amounts of data. One of the core issues for the efficient management of such applications is the prediction of tasks performance. This paper proposes a novel approach that enables the construction models for predicting task’s running-times of data-intensive scientific workflows. Ensemble Machine Learning techniques are used to produce robust combined models with high predictive accuracy. Information derived from workflow systems and the characteristics and provenance of the data are exploited to guarantee the accuracy of the models. The proposed approach has been tested on Bioinformatics workflows for Gene Expressions Analysis over homogeneous and heterogeneous computing environments. Obtained results highlight the convenience of using ensemble models in comparison with single/standalone prediction models. Ensemble learning techniques permitted reductions of the prediction error up to 24.9% in comparison with single-model strategies.

Keywords

Performance prediction Scientific workflows Ensemble Learning Data Provenance Data-intensive computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allan, R.: Survey of HPC performance modelling and prediction tools. Tech. Rep. DL-TR-2010-006, Science and Technology Facilities Council, Great Britain (July 2010), http://epubs.cclrc.ac.uk/bitstream/5264/DLTR-2010-006.pdf
  2. 2.
    Bengio, Y., Courville, A.C., Vincent, P.: Representation Learning: A Review and New Perspectives. Computing Reseach Repository-arXiv abs/1206.5538, 1–30 (April 2014), http://arxiv.org/abs/1206.5538
  3. 3.
    Chen, W., Deelman, E.: Partitioning and scheduling workflows across multiple sites with storage constraints. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 11–20. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    da Cruz, S., Campos, M., Mattoso, M.: Towards a taxonomy of provenance in scientific workflow management systems. In: 2009 World Conference on Services - I, pp. 259–266 (2009)Google Scholar
  5. 5.
    Genez, T., Bittencourt, L., Madeira, E.R.M.: Workflow scheduling for SaaS / PaaS cloud providers considering two SLA levels. In: 2012 IEEE Network Operations and Management Symposium (NOMS), pp. 906–912 (2012)Google Scholar
  6. 6.
    Hey, T., Tansley, S., Tolle, K. (eds.): The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research, Redmond, Washington (October 2009)Google Scholar
  7. 7.
    Holec, M., Klema, J., Železný, F., Tolar, J.: Comparative evaluation of set-level techniques in predictive classification of gene expression samples. BMC Bioinformatics 13(Suppl. 10, S15), 1–15 (2012)Google Scholar
  8. 8.
    Iverson, M., Ozguner, F., Potter, L.: Statistical prediction of task execution times through analytic benchmarking for scheduling in a heterogeneous environment. In: Heterogeneous Computing Workshop (HCW 1999) Proceedings of the Eighth, vol. 8, pp. 99–111. IEEE Computer Society, San Juan (1999)CrossRefGoogle Scholar
  9. 9.
    Mao, M., Humphrey, M.: Scaling and scheduling to maximize application performance within budget constraints in cloud workflows. In: 2013 IEEE 27th International Symposium on Parallel & Distributed Processing (IPDPS), pp. 67–78. IEEE (2013)Google Scholar
  10. 10.
    Marx, V.: Biology: The big challenges of big data. Nature 498(7453), 255–260 (2013)CrossRefGoogle Scholar
  11. 11.
    Monge, D.A., Bĕlohradský, J., García Garino, C., Železný, F.: A Performance Prediction Module for Workflow Scheduling. In: 4th Symposium on High-Performance Computing in Latin America (HPCLatAm 2011), vol. 4, pp. 130–144. SADIO, Córdoba (2011)Google Scholar
  12. 12.
    Ould-Ahmed-Vall, E., Woodlee, J., Yount, C., Doshi, K., Abraham, S.: Using model trees for computer architecture performance analysis of software applications. In: IEEE International Symposium on Performance Analysis of Systems Software, ISPASS 2007, pp. 116–125. IEEE Computer Society (April 2007)Google Scholar
  13. 13.
    Taylor, I., Deelman, E., Gannon, D., Shields, M.: Workflows for e-Science: Scientific Workflows for Grids. 1st edn. Springer, London(December 2007)Google Scholar
  14. 14.
    M.L.G. at the University of Waikato, Weka 3: Data mining software in java. (September 2013), http://www.cs.waikato.ac.nz/ml/weka
  15. 15.
    Wallace, R., Turchenko, V., Sheikhalishahi, M., Turchenko, I., Shults, V., Vazquez-Poletti, J., Grandinetti, L.: Applications of neural-based spot market prediction for cloud computing. In: 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), vol. 2, pp. 710–716 (September 2013)Google Scholar
  16. 16.
    Weicker, R.P.: Dhrystone: a synthetic systems programming benchmark. Communications of the ACM 27(10), 1013–1030 (1984)CrossRefGoogle Scholar
  17. 17.
    Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufman (January 2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • David A. Monge
    • 1
    • 2
  • Matĕj Holec
    • 3
  • Filip Z̆elezný
    • 3
  • Carlos García Garino
    • 1
    • 4
  1. 1.ITIC Research InstituteNational University of Cuyo (UNCuyo)Argentina
  2. 2.Faculty of Exact and Natural SciencesUNCuyoArgentina
  3. 3.IDA Research GroupCzech Technical UniversityCzech Republic
  4. 4.Faculty of EngineeringUNCuyoArgentina

Personalised recommendations