A Model to Calculate Amazon EC2 Instance Performance in Frost Prediction Applications

  • Lucas Iacono
  • José Luis Vázquez-Poletti
  • Carlos García Garino
  • Ignacio Martín Llorente
Part of the Communications in Computer and Information Science book series (CCIS, volume 485)


Frosts are one of the main causes of economic losses in the Province of Mendoza, Argentina. Although it is a phenomenon that happens every year, frosts can be predicted using Agricultural Monitoring Systems (AMS). AMS provide information to start and stop frosts defense systems and thus reduce economic losses. In recent years, the emergence of infrastructures called Sensor Clouds improved AMS in several aspects such as scalability, reliability, fault tolerance, etc. Sensor Clouds use Wireless Sensor Networks (WSN) to collect data in the field and Cloud Computing to store and process these data. Currently, Cloud providers like Amazon offer different instances to store and process data in a profitable way. Moreover, due to the variety of offered instances arises the need for tools to determine which is the most appropriate instance type, in terms of execution time and economic costs, for running agro-meteorological applications. In this paper we present a model targeted to estimate the execution time and economic cost of Amazon EC2 instances for frosts prediction applications.


Execution Time Sensor Node Wireless Sensor Network Cloud Computing Economic Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oliveira, L., Rodrigues, J.: Wireless Sensor Networks: A Survey on Environmental Monitoring. Journal of Communications 6(2), 143–151 (2011)CrossRefGoogle Scholar
  2. 2.
    Abbasi, A., Islam, N., Shaikh, Z.A., et al.: A Review of Wireless Sensors and Networks Applications in Agriculture. Computer Standards & Interfaces 36(2), 263–270 (2014)CrossRefGoogle Scholar
  3. 3.
    Lee, K., Murray, D., Hughes, D., Joosen, W.: Extending Sensor Networks Into the Cloud Using Amazon Web Services. In: 2010 IEEE International Conference on Networked Embedded Systems for Enterprise Applications (NESEA), pp. 1–7. IEEE (2010)Google Scholar
  4. 4.
    Ahmed, K., Gregory, M.: Integrating Wireless Sensor Networks with Cloud Computing. In: Seventh International Conference on Mobile Ad-hoc and Sensor Networks (2011 MSN), pp. 364–366. IEEE (2011)Google Scholar
  5. 5.
    Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions. Future Generation Computer Systems 29(7), 1645–1660 (2013)CrossRefGoogle Scholar
  6. 6.
    Hirafuji, M., Yoichi, H., Kiura, T., Matsumoto, K., Fukatsu, T., et al.: Creating High-performance/Low-cost Ambient Sensor Cloud System using OpenFS (Open Field Server) for High-throughput Phenotyping. In: Proceedings of 2011 SICE Annual Conference (2011 SICE), pp. 2090–2092. IEEE (2011)Google Scholar
  7. 7.
    Hori, M., Kawashima, E., Yamazaki, T.: Application of cloud computing to agriculture and prospects in other fields. Fujitsu Scientific & Technical Journal 46(4), 446–454 (2010)Google Scholar
  8. 8.
    Buyya, R., Yeo, C., Venugopal, S., Broberg, J., Brandic, I.: Cloud Computing and Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility. Future Generation Computer Systems 25(6), 599–616 (2009)CrossRefGoogle Scholar
  9. 9.
    Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-Degree Compared. In: Grid Computing Environments Workshop 2008 (GCE 2008), pp. 1–10. IEEE (2008)Google Scholar
  10. 10.
    Amazon EC2, Amazon Web Services (June 2014),
  11. 11.
    Google, Google App Engine (June 2014),
  12. 12.
    Microsoft, Windows Azure (June 2014),
  13. 13.
    Google, Google Docs (June 2014),
  14. 14.
    Lee, K., Hughes, D.: System Architecture Directions for Tangible Cloud Computing. In: International Workshop on Information Security and Applications (IWISA 2010), Qinhuangdao, China, vol. 25 (2010)Google Scholar
  15. 15.
    Snyder, R.L., de Melo-Abreu, J.P.: Frost protection: Fundamentals, Practice and Economics, vol. 1. Food and Agriculture Organization of the United Nations, FAO (2005)Google Scholar
  16. 16.
    Allen, C.C.: A Simplified Equation for Minimum Temperature Prediction. Monthly Weather Review 85, 119–120 (1957)CrossRefGoogle Scholar
  17. 17.
    Iacono, L.: Acceso Remoto a Redes de Sensores Inalámbricas Mediante Tecnologías de Computación Distribuida, Thesis Proposal, Facultad de Ingeniería, Universidad de Mendoza (2013)Google Scholar
  18. 18.
    Iacono, L., García Garino, C., Marianetti, O., Párraga, C.: Wireless Sensor Networks: A Software as a Service Approach. In: García Garino, C., Printista, M. (eds.) Prospective and Ongoing Projects, VI Latin American Symposium on High Performance Computing (HPCLatAm 2013), Mendoza, Argentina, pp. 184–195 (2013)Google Scholar
  19. 19.

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lucas Iacono
    • 1
    • 2
  • José Luis Vázquez-Poletti
    • 3
  • Carlos García Garino
    • 1
    • 4
  • Ignacio Martín Llorente
    • 3
  1. 1.ITICUniversidad Nacional de CuyoMendozaArgentina
  2. 2.Instituto de Microelectrónica. Facultad de IngenieríaUniversidad de MendozaMendozaArgentina
  3. 3.Departamento de Arquitectura de Computadores y Automática, Facultad de InformáticaUniversidad Complutense de MadridMadridSpain
  4. 4.Facultad de IngenieríaUniversidad Nacional de CuyoMendozaArgentina

Personalised recommendations