A Framework for Searching Semantic Data and Services with SPARQL

  • Mohamed Lamine Mouhoub
  • Daniela Grigori
  • Maude Manouvrier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8831)


The last years witnessed the success of Linked Open Data (LOD) project and the growing amount of semantic data sources available on the web. However, there is still a lot of data that will not be published as a fully materialized knowledge base (dynamic data, data with limited acces patterns, etc). Such data is in general available through web api or web services. In this paper, we introduce a SPARQL-driven approach for searching linked data and relevant services. In our framework, a user data query is analyzed and transformed into service requests. The resulting service requests, formatted for different semantic web services languages, are addressed to services repositories. Our system also features automatic web service composition to help finding more answers for user queries. The intended applications for such a framework vary from mashups development to aggregated search.


Service Composition Service Request Service Discovery SPARQL Query Data Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization techniques for federated query processing on linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 601–616. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Speiser, S., Harth, A.: Integrating linked data and services with linked data services. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 170–184. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Palmonari, M., Sala, A., Maurino, A., Guerra, F., Pasi, G., Frisoni, G.: Aggregated search of data and services. Information Systems 36(2), 134–150 (2011)CrossRefGoogle Scholar
  4. 4.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Intl. journal on semantic web and information systems 5(3), 1–22 (2009)CrossRefGoogle Scholar
  5. 5.
    Kopecky, J., Gomadam, K., Vitvar, T.: hrests: An html microformat for describing restful web services. In: IEEE/WIC/ACM Intl. Conf. on. Web Intelligence and Intelligent Agent Technology, WI-IAT 2008, vol. 1, pp. 619–625. IEEE (2008)Google Scholar
  6. 6.
    Blthoff, F., Maleshkova, M.: Restful or restless - current state of today’s top web apis. In: 11th ESWC 2014 (ESWC 2014) (May 2014)Google Scholar
  7. 7.
    Yan, Y., Xu, B., Gu, Z.: Automatic service composition using and/or graph. In: 2008 10th IEEE Conf. on E-Commerce Technology and the Fifth IEEE Conf. on Enterprise Computing, E-Commerce and E-Services, pp. 335–338. IEEE (2008)Google Scholar
  8. 8.
    Saleem, M., Ngonga Ngomo, A.-C.: HiBISCuS: Hypergraph-based source selection for SPARQL endpoint federation. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 176–191. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  9. 9.
    Ngan, L.D., Kanagasabai, R.: Semantic web service discovery: state-of-the-art and research challenges. Personal and ubiquitous computing 17(8), 1741–1752 (2013)CrossRefGoogle Scholar
  10. 10.
    García, J.M., Ruiz, D., Ruiz-Cortés, A.: Improving semantic web services discovery using sparql-based repository filtering. Web Semantics: Science, Services and Agents on the World Wide Web 17, 12–24 (2012)CrossRefGoogle Scholar
  11. 11.
    Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: Rapidly integrating services into the linked data cloud. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 559–574. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Syu, Y., Ma, S.P., Kuo, J.Y., FanJiang, Y.Y.: A survey on automated service composition methods and related techniques. In: 2012 IEEE Ninth Intl. Conf. on. Services Computing (SCC), pp. 290–297 (June 2012)Google Scholar
  13. 13.
    Rodriguez-Mier, P., Mucientes, M., Vidal, J.C., Lama, M.: An optimal and complete algorithm for automatic web service composition. Intl. Journal of Web Services Research (IJWSR) 9(2), 1–20 (2012)CrossRefGoogle Scholar
  14. 14.
    Preda, N., Suchanek, F.M., Kasneci, G., Neumann, T., Ramanath, M., Weikum, G.: Angie: Active knowledge for interactive exploration. Proc. of the VLDB Endowment 2(2), 1570–1573 (2009)CrossRefGoogle Scholar
  15. 15.
    Harth, A., Knoblock, C.A., Stadtmüller, S., Studer, R., Szekely, P.: On-the-fly integration of static and dynamic sources. In: Proceedings of the Fourth International Workshop on Consuming Linked Data (COLD 2013) (2013)Google Scholar
  16. 16.
    Dietze, S., Yu, H.Q., Pedrinaci, C., Liu, D., Domingue, J.: SmartLink: A web-based editor and search environment for linked services. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 436–440. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mohamed Lamine Mouhoub
    • 1
  • Daniela Grigori
    • 1
  • Maude Manouvrier
    • 1
  1. 1.CNRS, LAMSADE UMR 7243PSL, Université Paris-DauphineParis Cedex 16France

Personalised recommendations