Advertisement

A Multi-objective Approach to Business Process Repair

  • Chiara Di Francescomarino
  • Roberto Tiella
  • Chiara Ghidini
  • Paolo Tonella
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8831)

Abstract

Business process model repair aims at updating an existing model so as to accept deviant (e.g., new) behaviours, while remaining as close as possible to the initial model. In this paper, we present a multi-objective approach to process model repair, which maximizes the behaviours accepted by the repaired model while minimizing the cost associated with the repair operations. Given the repair operations for full process repair, we formulate the associated multi-objective problem in terms of a set of pseudo-Boolean constraints. In order to evaluate our approach, we have applied it to a case study from the Public Administration domain. Results indicate that it provides business analysts with a selection of good and tunable alternative solutions.

Keywords

Pareto Front Execution Trace Repair Operation Silent Transition Business Analyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P.: Business alignment: Using process mining as a tool for delta analysis and conformance testing. Requir. Eng. 10(3), 198–211 (2005)CrossRefGoogle Scholar
  2. 2.
    Arito, F., Chicano, F., Alba, E.: On the application of SAT solvers to the test suite minimization problem. In: Proc. of the 4th Int. Symposium on Search Based Software Engineering (SSBSE), pp. 45–59 (2012)Google Scholar
  3. 3.
    Buijs, J.C.A.M., La Rosa, M., Reijers, H.A., van Dongen, B.F., van der Aalst, W.M.P.: Improving business process models using observed behavior. In: Cudre-Mauroux, P., Ceravolo, P., Gašević, D. (eds.) SIMPDA 2012. LNBIP, vol. 162, pp. 44–59. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Fahland, D., van der Aalst, W.M.P.: Repairing process models to reflect reality. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 229–245. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Fahland, D., van der Aalst, W.M.P.: Simplifying mined process models: An approach based on unfoldings. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 362–378. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Gambini, M., La Rosa, M., Migliorini, S., Ter Hofstede, A.H.M.: Automated error correction of business process models. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 148–165. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Li, C., Reichert, M., Wombacher, A.: Discovering reference models by mining process variants using a heuristic approach. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 344–362. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Marchetto, A., Di Francescomarino, C., Tonella, P.: Optimizing the trade-off between complexity and conformance in process reduction. In: Cohen, M.B., Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS, vol. 6956, pp. 158–172. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Medeiros, A.K.A.D., Weijters, A.J.M.M.: Genetic process mining: an experimental evaluation. Data Min. Knowl. Discov. 14 (2007)Google Scholar
  10. 10.
    Tomasi, A., Marchetto, A., Di Francescomarino, C.: Domain-driven reduction optimization of recovered business processes. In: Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515, pp. 228–243. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Tonella, P., Marchetto, A., Nguyen, C.D., Jia, Y., Lakhotia, K., Harman, M.: Finding the optimal balance between over and under approximation of models inferred from execution logs. In: 2012 IEEE Fifth Int. Conf. on. Software Testing, Verification and Validation (ICST), pp. 21–30. IEEE (2012)Google Scholar
  12. 12.
    Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective evolutionary algorithm test suites. In: Proc. of the 1999 ACM Symp. on Applied Computing, pp. 351–357. ACM (1999)Google Scholar
  13. 13.
    Yoo, S., Harman, M.: Pareto efficient multi-objective test case selection. In: Proc. of the 2007 Int. Symposium on Software Testing and Analysis, pp. 140–150. ACM (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Chiara Di Francescomarino
    • 1
  • Roberto Tiella
    • 1
  • Chiara Ghidini
    • 1
  • Paolo Tonella
    • 1
  1. 1.FBK-irstTrentoItaly

Personalised recommendations