Subspaces Clustering Approach to Lossy Image Compression

  • Przemysław Spurek
  • Marek Śmieja
  • Krzysztof Misztal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8838)


In this contribution lossy image compression based on subspaces clustering is considered. Given a PCA factorization of each cluster into subspaces and a maximal compression error, we show that the selection of those subspaces that provide the optimal lossy image compression is equivalent to the 0-1 Knapsack Problem. We present a theoretical and an experimental comparison between accurate and approximate algorithms for solving the 0-1 Knapsack problem in the case of lossy image compression.


lossy compression image compression subspaces clustering 


  1. 1.
    Gray, R.: Vector quantization. IEEE ASSP Magazine 1(2), 4–29 (1984)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Scheunders, P.: A genetic lloyd-max image quantization algorithm. Pattern Recognition Letters 17(5), 547–556 (1996)CrossRefGoogle Scholar
  3. 3.
    Lin, Y.-C., Tai, S.-C.: A fast linde-buzo-gray algorithm in image vector quantization. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 45(3), 432–435 (1998)CrossRefGoogle Scholar
  4. 4.
    Gray, R.M., Neuhoff, D.L.: Quantization. IEEE Transactions on Information Theory 44(6), 2325–2383 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Equitz, W.H.: A new vector quantization clustering algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing 10(37), 1568–1575 (1989)CrossRefGoogle Scholar
  6. 6.
    Scheunders, P.: A genetic c-means clustering algorithm applied to color image quantization. Pattern Recognition 30(6), 859–866 (1997)CrossRefGoogle Scholar
  7. 7.
    Chou, C.-H., Su, M.-C., Lai, E.: A new cluster validity measure and its application to image compression. Pattern Analysis and Applications 7(2), 205–220 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Spurek, P., Tabor, J., Misztal, K.: Weighted Approach to Projective Clustering. In: Saeed, K., Chaki, R., Cortesi, A., Wierzchoń, S. (eds.) CISIM 2013. LNCS, vol. 8104, pp. 367–378. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Agarwal, P.K., Mustafa, N.H.: k-means projective clustering. In: Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 155–165. ACM (2004)Google Scholar
  10. 10.
    Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery from Data (TKDD) 3(1), 1–58 (2009)CrossRefGoogle Scholar
  11. 11.
    Parsons, L., Haque, E., Liu, H.: Subspace clustering for high dimensional data: a review. ACM SIGKDD Explorations Newsletter 6(1), 90–105 (2004)CrossRefGoogle Scholar
  12. 12.
    Vidal, R.: Subspace clustering. IEEE Signal Processing Magazine 28(2), 52–68 (2011)CrossRefGoogle Scholar
  13. 13.
    Jolliffe, I.: Principal component analysis. Wiley Online Library (2005)Google Scholar
  14. 14.
    Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics 2(4), 433–459 (2010)CrossRefGoogle Scholar
  15. 15.
    Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometrics and Intelligent Laboratory Systems 2(1), 37–52 (1987)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 245–250. ACM (2001)Google Scholar
  17. 17.
    Ifarraguerri, A., Chang, C.-I.: Unsupervised hyperspectral image analysis with projection pursuit. IEEE Transactions on Geoscience and Remote Sensing 38(6), 2529–2538 (2000)CrossRefGoogle Scholar
  18. 18.
    Kaarna, A., Zemcik, P., Kalviainen, H., Parkkinen, J.: Compression of multispectral remote sensing images using clustering and spectral reduction. IEEE Transactions on Geoscience and Remote Sensing 38(2), 1073–1082 (2000)CrossRefGoogle Scholar
  19. 19.
    Grim, J.: Multimodal discrete karhunen-loève expansion. Kybernetika 22(4), 329–330 (1986)MathSciNetzbMATHGoogle Scholar
  20. 20.
    USC-SIPI, USC-SIPI image database,
  21. 21.
    Jolliffe, I.: Principal component analysis. In: Encyclopedia of Statistics in Behavioral Science (2002)Google Scholar
  22. 22.
    Martello, S., Toth, P.: Knapsack problems: algorithms and computer implementations, John Wiley & Sons, Inc (1990)Google Scholar
  23. 23.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack problems. Springer (2004)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Przemysław Spurek
    • 1
  • Marek Śmieja
    • 1
  • Krzysztof Misztal
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceJagiellonian UniversityKrakówPoland
  2. 2.Faculty of Physics and Applied Computer ScienceAGH University of Science and TechnologyKrakówPoland

Personalised recommendations