Abstract

Model-based testing allows the creation of test cases from a model of the system under test. Often, such models are difficult to obtain, or even not available. Automata learning helps in inferring the model of a system by observing its behaviour. The model can be employed for many purposes, such as testing other implementations, regression testing, or model checking. We present an algorithm for active learning of nondeterministic, input-enabled, labelled transition systems, based on the well known Angluin’s L ⋆  algorithm. Under some assumptions, for dealing with nondeterminism, input-enabledness and equivalence checking, we prove that the algorithm produces a model whose behaviour is equivalent to the one under learning. We define new properties for the structure used in the algorithm, derived from the semantics of labelled transition systems. Such properties help the learning, by avoiding to query the system under learning when it is not necessary.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learning through counterexample guided abstraction refinement. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Aarts, F., Vaandrager, F.: Learning I/O automata. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Angluin, D.: Learning regular sets from queries and counterexamples. Information and Computation 75(2), 87–106 (1987)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On the correspondence between conformance testing and regular inference. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA, IJCAI 2009, pp. 1004–1009. Morgan Kaufmann Publishers Inc. (2009)Google Scholar
  6. 6.
    El-Fakih, K., Groz, R., Irfan, M.N., Shahbaz, M.: Learning finite state models of observable nondeterministic systems in a testing context. In: ICTSS 2010, pp. 97–102 (2010)Google Scholar
  7. 7.
    Howar, F., Isberner, M., Steffen, B., Bauer, O., Jonsson, B.: Inferring semantic interfaces of data structures. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 554–571. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  9. 9.
    Niese, O.: An integrated approach to testing complex systems. Ph.D. thesis, University of Dortmund (2003)Google Scholar
  10. 10.
    Pacharoen, W., Toshiaki, A., Bhattarakosol, P., Surarerks, A.: Active Learning of Non-deterministic Finite State Machines. In: Mathematical Problems in Engineering 2013, p. 11 (2013)Google Scholar
  11. 11.
    Rivest, R., Schapire, R.: Inference of finite automata using homing sequences. In: Hanson, S.J., Rivest, R.L., Remmele, W. (eds.) MIT-Siemens 1993. LNCS, vol. 661, pp. 51–73. Springer, Heidelberg (1993)Google Scholar
  12. 12.
    Shahbaz, M., Groz, R.: Inferring mealy machines. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Smeenk, W.: Applying Automata Learning to Complex Industrial Software. Radboud University Nijmegen, master’s thesis (2012)Google Scholar
  14. 14.
    Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 256–296. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Tretmans, J.: Test Generation with Inputs, Outputs and Repetitive Quiescence. Software-Concepts and Tools 3, 103–120 (1996)Google Scholar
  16. 16.
    Tretmans, J.: Model-based testing and some steps towards test-based modelling. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 297–326. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Volpato, M., Tretmans, J.: Towards quality of model-based testing in the ioco framework. In: Proceedings of the 2013 International Workshop on Joining AcadeMiA and Industry Contributions to Testing Automation, JAMAICA 2013, pp. 41–46. ACM, New York (2013)CrossRefGoogle Scholar
  18. 18.
    Willemse, T.A.C.: Heuristics for ioco-based test-based modelling. In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006. LNCS, vol. 4346, pp. 132–147. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michele Volpato
    • 1
  • Jan Tretmans
    • 1
    • 2
  1. 1.Institute for Computing and Information SciencesRadboud Universiteit NijmegenNijmegenThe Netherlands
  2. 2.TNO - Embedded Systems InnovationEindhovenThe Netherlands

Personalised recommendations