Algorithms for Inferring Register Automata

A Comparison of Existing Approaches
  • Fides Aarts
  • Falk Howar
  • Harco Kuppens
  • Frits Vaandrager
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8802)

Abstract

In recent years, two different approaches for learning register automata have been developed: as part of the LearnLib tool algorithms have been implemented that are based on the Nerode congruence for register automata, whereas the Tomte tool implements algorithms that use counterexample-guided abstraction refinement to automatically construct appropriate mappers. In this paper, we compare the LearnLib and Tomte approaches on a newly defined set of benchmarks and highlight their differences and respective strengths.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, F.: Tomte: Bridging the Gap between Active Learning and Real-World Systems. PhD thesis, Radboud University Nijmegen (October 2014)Google Scholar
  2. 2.
    Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learning through counterexample guided abstraction refinement. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 10–27. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Aarts, F., Jonsson, B., Uijen, J.: Generating models of infinite-state communication protocols using regular inference with abstraction. In: Petrenko, A., Simão, A., Maldonado, J.C. (eds.) ICTSS 2010. LNCS, vol. 6435, pp. 188–204. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.W.: Generating models of infinite-state communication protocols using regular inference with abstraction. In: Formal Methods in System Design (to appear, 2014)Google Scholar
  5. 5.
    Aarts, F., Kuppens, H., Tretmans, G.J., Vaandrager, F.W., Verwer, S.: Learning and testing the bounded retransmission protocol. In: Heinz, J., de la Higuera, C., Oates, T. (eds.) Proceedings 11th International Conference on Grammatical Inference (ICGI 2012), University of Maryland, College Park, USA, September 5-8. JMLR Workshop and Conference Proceedings, vol. 21, pp. 4–18 (2012)Google Scholar
  6. 6.
    Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and abstraction of the biometric passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol. 6415, pp. 673–686. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Aarts, F., Vaandrager, F.: Learning I/O automata. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Aarts, F., Ruiter, J.D., Poll, E.: Formal models of bank cards for free. In: IEEE International Conference on Software Testing Verification and Validation Workshop, pp. 461–468. IEEE Computer Society, Los Alamitos (2013)Google Scholar
  9. 9.
    Abadi, M., Lamport, L.: The existence of refinement mappings. Theoretical Computer Science 82(2), 253–284 (1991)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Cassel, S., Howar, F., Jonsson, B., Merten, M., Steffen, B.: A succinct canonical register automaton model. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 366–380. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Learning Extended Finite State Machines. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 250–264. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  13. 13.
    Chalupar, G., Peherstorfer, S., Poll, E., de Ruiter, J.: Automated reverse engineering using Lego. In: Proceedings 8th USENIX Workshop on Offensive Technologies (WOOT 2014), San Diego, California, IEEE Computer Society, Los Alamitos (2014)Google Scholar
  14. 14.
    Cho, C.Y., Babic, D., Shin, E.C.R., Song, D.: Inference and analysis of formal models of botnet command and control protocols. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM Conference on Computer and Communications Security, pp. 426–439. ACM (2010)Google Scholar
  15. 15.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  16. 16.
    Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Learning fragments of the TCP network protocol. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718, pp. 78–93. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  17. 17.
    Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of event-recording automata using timed decision trees. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Grumberg, O., Veith, H. (eds.): 25 Years of Model Checking. LNCS, vol. 5000. Springer, Heidelberg (2008)MATHGoogle Scholar
  19. 19.
    Hagerer, A., Hungar, H.: Model generation by moderated regular extrapolation. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306, pp. 80–95. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press (April 2010)Google Scholar
  21. 21.
    Howar, F., Giannakopoulou, D., Rakamaric, Z.: Hybrid learning: interface generation through static, dynamic, and symbolic analysis. In: Proc. of ISSTA 2013, pp. 268–279. ACM (2013)Google Scholar
  22. 22.
    Howar, F., Isberner, M., Steffen, B., Bauer, O., Jonsson, B.: Inferring Semantic Interfaces of Data Structures. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 554–571. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register automata. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 251–266. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Ip, C.N., Dill, D.L.: Better verification through symmetry. Formal Methods in System Design 9(1/2), 41–75 (1996)Google Scholar
  25. 25.
    Isberner, M., Howar, F., Steffen, B.: Learning register automata: from languages to program structures. Machine Learning 96(1-2), 65–98 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)CrossRefMATHGoogle Scholar
  27. 27.
    Merten, M., Steffen, B., Howar, F., Margaria, T.: Next generation learnLib. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Nerode, A.: Linear automaton transformations. Proceedings of the American Mathematical Society 9(4), 541–544 (1958)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Niese, O.: An Integrated Approach to Testing Complex Systems. PhD thesis, University of Dortmund (2003)Google Scholar
  30. 30.
    Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson, S.T., Gao, Q. (eds.) Proceedings FORTE. IFIP Conference Proceedings, vol. 156, pp. 225–240. Kluwer (1999)Google Scholar
  31. 31.
    Raffelt, H., Merten, M., Steffen, B., Margaria, T.: Dynamic testing via automata learning. STTT 11(4), 307–324 (2009)CrossRefGoogle Scholar
  32. 32.
    Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 256–296. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  33. 33.
    Tijssen, M.: Automatic Modeling of SSH Implementations with State Machine Learning Algorithms. Bachelor thesis, ICIS, Radboud University Nijmegen (June 2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Fides Aarts
    • 1
  • Falk Howar
    • 2
  • Harco Kuppens
    • 1
  • Frits Vaandrager
    • 1
  1. 1.Institute for Computing and Information SciencesRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Carnegie Mellon UniversityMoffett FieldUSA

Personalised recommendations