We currently lack rigorous approaches for modeling and implementing complex systems. BIP (Behavior, Interaction, Priority) is a component-based framework intended to rigorous system design. It relies on single semantic model for system descriptions all along the design flow. It also includes methods and tools for guaranteeing system correctness to avoid a posteriori verification. Our approach is to check safety properties (e.g. deadlock freedom) at design time using D-Finder verification tool. In addition, source-to-source transformers allow progressive refinement of the application to generate a correct implementation. Our framework was successfully applied in various context including robotics case studies presented here.


Autonomous System Abstract Model Linear Temporal Logic Safety Property Correct Implementation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halbwachs, N.: Synchronous Programming of Reactive Systems. Kluwer Academic Publishers (1993)Google Scholar
  2. 2.
    Burns, A., Welling, A.: Real-Time Systems and Programming Languages, 3rd edn. Addison-Wesley (2001)Google Scholar
  3. 3.
    Bliudze, S., Sifakis, J.: A Notion of Glue Expressiveness for Component-Based Systems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 508–522. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Garlan, D., Monroe, R., Wile, D.: ACME: An architecture description interchange language. In: CASCON 1997, pp. 169–183 (1997),
  5. 5.
    Magee, J., Kramer, J.: Dynamic structure in software architectures. In: SIGSOFT 1996, pp. 3–14 (1996)Google Scholar
  6. 6.
    OMG: OMG Systems Modeling Language SysML (OMG SysML). Object Management Group (2008)Google Scholar
  7. 7.
    Feiler, P.H., Lewis, B., Vestal, S.: The SAE Architecture Analysis and Design Language (AADL) Standard: A basis for model-based architecture-driven embedded systems engineering. In: RTAS Workshop on Model-driven Embedded Systems, pp. 1–10 (2003),
  8. 8.
    Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S., Xiong, Y.: Taming heterogeneity: The Ptolemy approach. Proceedings of the IEEE 91(1), 127–144 (2003)CrossRefGoogle Scholar
  9. 9.
    Basu, A., Gallien, M., Lesire, C., Nguyen, T.H., Bensalem, S., Ingrand, F., Sifakis, J.: Incremental Component-Based Construction and Verification of a Robotic System. In: ECAI 2008. FAIA, vol. 178, pp. 631–635. IOS Press (2008)Google Scholar
  10. 10.
    Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H., Sifakis, J.: Rigorous component-based system design using the bip framework. IEEE Software 28(3), 41–48 (2011)CrossRefGoogle Scholar
  11. 11.
    Bensalem, S., de Silva, L., Griesmayer, A., Ingrand, F., Legay, A., Yan, R.: A formal approach for incremental construction with an application to autonomous robotic systems. In: Apel, S., Jackson, E. (eds.) SC 2011. LNCS, vol. 6708, pp. 116–132. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Abdellatif, T., Combaz, J., Sifakis, J.: Model-based implementation of real-time applications. In: Carloni, L.P., Tripakis, S. (eds.) EMSOFT, pp. 229–238. ACM (2010)Google Scholar
  13. 13.
    Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: From high-level component-based models to distributed implementations. In: EMSOFT (2010)Google Scholar
  14. 14.
    Aştefănoaei, L., Ben Rayana, S., Bensalem, S., Bozga, M., Combaz, J.: Compositional invariant generation for timed systems. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 263–278. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  15. 15.
    Intelligent robots for improving the quality of life,
  16. 16.
    Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., Vaussard, F., Bleuler, H., Mondada, F.: The MarXbot, a Miniature Mobile Robot Opening new Perspectives for the Collective-robotic Research. In: International Conference on Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ. IEEE International Conference on Intelligent Robots and Systems, pp. 4187–4193. IEEE Press (2010)Google Scholar
  17. 17.
    Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Caro, G.D., Ducatelle, F., Birattari, M., Gambardella, L.M., Dorigo, M.: Argos: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence 6(4), 271–295 (2012)CrossRefGoogle Scholar
  18. 18.
    Bensalem, S., Bozga, M., Delahaye, B., Jegourel, C., Legay, A., Nouri, A.: Statistical model checking qoS properties of systems with SBIP. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 327–341. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Saddek Bensalem
    • 1
  • Marius Bozga
    • 1
  • Jacques Combaz
    • 1
  • Ahlem Triki
    • 1
  1. 1.VerimagFrance

Personalised recommendations