Proof reuse in formal software verification is crucial in presence of constant evolutionary changes to the verification target. Contract-based verification makes it possible to verify large programs, because each method in a program can be verified against its contract separately. A small change to some contract, however, invalidates all proofs that rely on it, which makes reuse difficult. We introduce fully abstract contracts and class invariants which permit to completely decouple reasoning about programs from the applicability check of contracts. We implemented tool support for abstract contracts as part of the KeY verification system and empirically show the considerable reuse potential of our approach.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Meyer, B.: Applying “design by contract”. IEEE Computer 25(10), 40–51 (1992)CrossRefGoogle Scholar
  2. 2.
    Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)Google Scholar
  3. 3.
    Hähnle, R., Schaefer, I., Bubel, R.: Reuse in software verification by abstract method calls. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 300–314. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Thüm, T., Schaefer, I., Apel, S., Hentschel, M.: Family-based deductive verification of software product lines. In: Proceedings of the 11th International Conference on Generative Programming and Component Engineering, GPCE 2012, pp. 11–20. ACM, New York (2012)CrossRefGoogle Scholar
  5. 5.
    Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P., Kiniry, J., Chalin, P., Zimmerman, D.M.: JML Reference Manual. Draft revision 1.235 (September 2009)Google Scholar
  6. 6.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM 12(10) (October 1969)Google Scholar
  7. 7.
    Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core language for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst. 16(6), 1811–1841 (1994)CrossRefGoogle Scholar
  9. 9.
    Beckert, B., Klebanov, V.: Proof reuse for deductive program verification. In: Third IEEE International Conference on Software Engineering and Formal Methods, pp. 77–86. IEEE Computer Society (2004)Google Scholar
  10. 10.
    Reif, W., Stenzel, K.: Reuse of proofs in software verification. In: Shyamasundar, R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 284–293. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  11. 11.
    Dovland, J., Johnsen, E.B., Yu, I.C.: Tracking behavioral constraints during object-oriented software evolution. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609, pp. 253–268. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Grigore, R., Moskal, M.: Edit & verify. In: First-order Theorem Proving Workshop, Liverpool, UK (2007)Google Scholar
  13. 13.
    Melis, E., Whittle, J.: Analogy in inductive theorem proving. J. Autom. Reasoning 22(2), 117–147 (1999)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Walther, C., Kolbe, T.: Proving theorems by reuse. Artificial Intelligence 116(1-2), 17–66 (2000)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Felty, A.P., Howe, D.J.: Generalization and reuse of tactic proofs. In: Pfenning, F. (ed.) LPAR 1994. LNCS, vol. 822, pp. 1–15. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  16. 16.
    Hutter, D., Autexier, S.: Formal Software Development in MAYA. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 407–432. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Schairer, A., Hutter, D.: Proof transformations for evolutionary formal software development. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 441–456. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Bruns, D., Klebanov, V., Schaefer, I.: Verification of software product lines with delta-oriented slicing. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 61–75. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Damiani, F., Owe, O., Dovland, J., Schaefer, I., Johnsen, E.B., Yu, I.C.: A transformational proof system for delta-oriented programming. In: SPLC (2), pp. 53–60 (2012)Google Scholar
  20. 20.
    Parkinson, M., Bierman, G.: Separation logic and abstraction. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005, pp. 247–258. ACM, New York (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Richard Bubel
    • 1
  • Reiner Hähnle
    • 1
  • Maria Pelevina
    • 1
  1. 1.Department of Computer ScienceTechnical University of DarmstadtGermany

Personalised recommendations