Requirements Driven Data Warehouse Design: We Can Go Further

  • Selma Khouri
  • Ladjel Bellatreche
  • Stéphane Jean
  • Yamine Ait-Ameur
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8803)


Data warehouses (\(\mathcal{D}\mathcal{W}\)) are defined as data integration systems constructed from a set of heterogeneous sources and user’s requirements. Heterogeneity is due to syntactic and semantic conflicts occurring between used concepts. Existing \(\mathcal{D}\mathcal{W}\) design methods associate heterogeneity only to data sources. We claim in this paper that heterogeneity is also associated to users’ requirements. Actually, requirements are collected from heterogeneous target users, which can cause semantic conflicts between concepts expressed. Besides, requirements can be analyzed by heterogeneous designers having different design skills, which can cause formalism heterogeneity. Integration is the process that manages heterogeneity in \(\mathcal{D}\mathcal{W}\) design. Ontologies are recognized as the key solution for ensuring an automatic integration process. We propose to extend the use of ontologies to resolve conflicts between requirements. A pivot model is proposed for integrating requirements schemas expressed in different formalisms. A \(\mathcal{D}\mathcal{W}\) design method is proposed for providing the target \(\mathcal{D}\mathcal{W}\) schema (star or snowflake schema) that meets a uniformed and consistent set of requirements.


Data warehouse semantic heterogeneity formalism heterogeneity integration ontology-based design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellatreche, L., Dung, N.X., Pierra, G., Hondjack, D.: Contribution of ontology-based data modeling to automatic integration of electronic catalogues within engineering databases. Computers in Industry 57(8), 711–724 (2006)CrossRefGoogle Scholar
  2. 2.
    Boukhari, I., Bellatreche, L., Khouri, S.: Efficient, unified, and intelligent user requirement collection and analysis in global enterprises. In: Proceedings of International Conference on Information Integration and Web-based Applications & Services, p. 686. ACM (2013)Google Scholar
  3. 3.
    Bruckner, R., List, B., Schiefer, J.: Developing requirements for data warehouse systems with use cases. In: Proc. 7th Americas Conf. on Information Systems, pp. 329–335 (2001)Google Scholar
  4. 4.
    Doan, A., Halevy, A.Y., Ives, Z.G.: Principles of Data Integration. Morgan Kaufmann (2012)Google Scholar
  5. 5.
    Fankam, C.: OntoDB2 : Un systeme flexible et efficient de Base de Donnees á Base Ontologique pour le Web semantique et les donnees techniques. PhD thesis, ENSMA (December 2009)Google Scholar
  6. 6.
    Giorgini, P., Rizzi, S., Garzetti, M.: Goal-oriented requirement analysis for data warehouse design. In: Proceedings of the 8th ACM International Workshop on Data Warehousing and OLAP, pp. 47–56. ACM (2005)Google Scholar
  7. 7.
    Goknil, A., Kurtev, I., Berg, K., Veldhuis, J.-W.: Semantics of trace relations in requirements models for consistency checking and inferencing. Softw. Syst. Model. 10, 31–54 (2011)CrossRefGoogle Scholar
  8. 8.
    Golfarelli, M.: From user requirements to conceptual design in data warehouse design a survey. In: Data Warehousing Design and Advanced Engineering Applications Methods for Complex Construction, pp. 1–16 (2010)Google Scholar
  9. 9.
    Inmon, W.H.: Building the data warehouse. J. Wiley (2002)Google Scholar
  10. 10.
    Kaiya, H., Saeki, M.: Ontology based requirements analysis: Lightweight semantic processing approach. In: Proceedings of the Fifth International Conference on Quality Software, pp. 223–230. IEEE Computer Society (2005)Google Scholar
  11. 11.
    Khouri, S., Boukhari, I., Bellatreche, L., Jean, S., Sardet, E., Baron, M.: Ontology-based structured web data warehouses for sustainable interoperability: Requirement modeling, design methodology and tool. Computers in Industry, 799–812 (2012)Google Scholar
  12. 12.
    Kimball, R., Reeves, L., Thornthwaite, W., Ross, M., Thornwaite, W.: The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing and Deploying Data Warehouses, 1st edn. John Wiley & Sons, Inc., New York (1998)Google Scholar
  13. 13.
    Körner, J.S., Torben, B.: Natural language specification improvement with ontologies. Int. J. Semantic Computing 3, 445–470 (2009)CrossRefGoogle Scholar
  14. 14.
    List, B., Schiefer, J., Tjoa, A.M.: Process-oriented requirement analysis supporting the data warehouse design process a use case driven approach. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 593–603. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    López, O., Laguna, M.A., García, F.J.: Metamodeling for requirements reuse. In: Anais do WER02-Workshop em Engenharia de Requisitos, Valencia, Spain (2002)Google Scholar
  16. 16.
    Nebot, V., Berlanga, R.: Building data warehouses with semantic web data. Decision Support Systems (2011)Google Scholar
  17. 17.
    Romero, O., Abelló, A.: Automating multidimensional design from ontologies. In: Proceedings of the ACM Tenth International Workshop on Data Warehousing and OLAP, pp. 1–8. ACM (2007)Google Scholar
  18. 18.
    Romero, O., Simitsis, A., Abelló, A.: Gem: Requirement-driven generation of etl and multidimensional conceptual designs. In: Data Warehousing and Knowledge Discovery, pp. 80–95 (2011)Google Scholar
  19. 19.
    Saeki, M., Hayashi, S., Kaiya, H.: A tool for attributed goal-oriented requirements analysis. In: 24th IEEE/ACM International Conference on Automated Software Engineering, pp. 674–676 (2009)Google Scholar
  20. 20.
    Siegemund, K., Edward, J., Thomas, Y., Yuting, Z., Pan, J., Assmann, U.: Towards ontology-driven requirements engineering. In: 7th International Workshop on Semantic Web Enabled Software Engineering (October 2011)Google Scholar
  21. 21.
    Wieringa, R., Dubois, E.: Integrating semi-formal and formal software specification techniques. Information Systems 23(3-4), 159–178 (1998)CrossRefGoogle Scholar
  22. 22.
    Winter, R., Strauch, B.: A method for demand-driven information requirements analysis in data warehousing projects. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences, 2003, pp. 9–19. IEEE (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Selma Khouri
    • 1
    • 2
  • Ladjel Bellatreche
    • 1
  • Stéphane Jean
    • 1
  • Yamine Ait-Ameur
    • 3
  1. 1.LIAS/ISAE-ENSMAPoitiers UniversityFrance
  2. 2.National High School for Computer Science (ESI)AlgiersAlgeria
  3. 3.ENSEEIHT/IRITToulouseFrance

Personalised recommendations