Rapid progress in modern medical technologies has led to a new generation of healthcare devices and treatment strategies. Examples include electro-anatomical mapping and intervention, bio-compatible and implantable devices, minimally invasive embedded devices, and robotic prosthetics.


Model Check Graphic Processing Unit Temporal Logic Implantable Device Hybrid Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of temporal properties for stochastic models. In: Proc. of HSB 2013. EPTCS, vol. 125, pp. 3–19 (2013)Google Scholar
  2. 2.
    Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 23–37. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  3. 3.
    Bartocci, E., Cherry, E.M., Glimm, J., Grosu, R., Smolka, S.A., Fenton, F.H.: Toward real-time simulation of cardiac dynamics. In: Proc. of CMSB 2011, pp. 103–112. ACM (2011)Google Scholar
  4. 4.
    Bartocci, E., Corradini, F., Di Berardini, M.R., Smolka, S.A., Grosu, R.: Modeling and simulation of cardiac tissue using hybrid I/O automata. Theor. Comput. Sci. 410(33-34), 3149–3165 (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bartocci, E., Corradini, F., Entcheva, E., Grosu, R., Smolka, S.A.: CellExcite: An efficient simulation environment for excitable cells. BMC Bioinformatics 9(suppl. 2), S3 (2008)Google Scholar
  6. 6.
    Bartocci, E., Liò, P., Merelli, E., Paoletti, N.: Multiple verification in complex biological systems: The bone remodelling case study. T. Comp. Sys. Biology 14, 53–76 (2012)Google Scholar
  7. 7.
    Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L.: Temporal logic based monitoring of assisted ventilation in intensive care patients. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 391–403. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Chen, T., Diciolla, M., Kwiatkowska, M., Mereacre, A.: Quantitative verification of implantable cardiac pacemakers over hybrid heart models. Inf. and Comp. 236, 87–101 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Clarke, E.M., Gao, S.: Model checking hybrid systems (Invited talk). In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 385–386. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.: On temporal logic and signal processing. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 92–106. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–214. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Grosu, R., et al.: Compositional, approximate, and quantitative reasoning for medical cyber-physical systems with application to patient-specific cardiac dynamics and devices. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 356–364. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci, E.: Learning and detecting emergent behavior in networks of cardiac myocytes. Commun. ACM 52(3), 97–105 (2009)CrossRefGoogle Scholar
  15. 15.
    Kwiatkowska, M., Mereacre, A., Paoletti, N.: On quantitative software quality assurance methodologies for cardiac pacemakers. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 365–384. Springer, Heidelberg (2014)Google Scholar
  16. 16.
    Kwiatkowska, M., Lea-Banks, H., Mereacre, A., Paoletti, N.: Formal modelling and validation of rate-adaptive pacemakers. In: IEEE International Conference on Healthcare Informatics, ICHI 2014 (to appear, 2014)Google Scholar
  17. 17.
    Leucker, M.: Challenges for the dynamic interconnection of medical devices. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014, Part II. LNCS, vol. 8803, pp. 387–390. Springer, Heidelberg (2014)Google Scholar
  18. 18.
    Murthy, A., Bartocci, E., Fenton, F., Glimm, J., Gray, R., Cherry, E., Smolka, S., Grosu, R.: Curvature analysis of cardiac excitation wavefronts. IEEE/ACM Transactions on Computational Biology and Bioinformatics 10(2), 323–336 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ezio Bartocci
    • 1
  • Sicun Gao
    • 2
  • Scott A. Smolka
    • 3
  1. 1.Vienna University of TechnologyAustria
  2. 2.Carnegie Mellon UniversityUSA
  3. 3.Stony Brook UniversityUSA

Personalised recommendations