Approximate Local Sums and Their Applications in Radio Networks

  • Zhiyu Liu
  • Maurice Herlihy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8784)

Abstract

Although any problem in a radio network can be solved using broadcast algorithms, some problems can be solved substantially more efficiently by more specialized algorithms. This paper presents two new approximate algorithms for the local sum problem, in which each node computes a (1±ε)-approximation to the sum of the values held by its incoming neighbors (nodes that have outgoing edges to the node). We propose algorithms both with and without collision detection, as well as for the beeping model, with round complexity \(O({\log^{2} n + \log n\log m \over \epsilon^2})\), where n is the number of nodes and the value held by each node is a real number in {0} ∪ [1,m]. We then show how these algorithms can be used as building blocks to construct applications such as approximate random walk distribution, PageRank, and global sum.

Keywords

radio networks algorithms model with collision detection model without collision detection beeping model local sum random walk PageRank 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a maximal independent set. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 32–50. Springer, Heidelberg (2011)Google Scholar
  2. 2.
    Avrachenkov, K., Litvak, N., Nemirovsky, D., Osipova, N.: Monte carlo methods in pagerank computation: When one iteration is sufficient. SIAM J. Numer. Anal. 45(2), 890–904 (2007)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in radio networks: An exponential gap between determinism randomization. In: Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing, PODC 1987, pp. 98–108. ACM, New York (1987)CrossRefGoogle Scholar
  4. 4.
    Capetanakis, J.: Generalized tdma: The multi-accessing tree protocol. IEEE Transactions on Communications 27(10), 1476–1484 (1979)CrossRefGoogle Scholar
  5. 5.
    Capetanakis, J.: Tree algorithms for packet broadcast channels. IEEE Trans. Inf. Theor. 25(5), 505–515 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chlamtac, I., Kutten, S.: On broadcasting in radio networks–problem analysis and protocol design. IEEE Transactions on Communications 33(12), 1240–1246 (1985)CrossRefMATHGoogle Scholar
  7. 7.
    Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–162. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 492–501 (2003)Google Scholar
  9. 9.
    Gasieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio networks. In: Proceedings of the Twenty-fourth Annual ACM Symposium on Principles of Distributed Computing, PODC 2005, pp. 129–137. ACM, New York (2005)Google Scholar
  10. 10.
    Gąsieniec, L., Pelc, A., Peleg, D.: The wakeup problem in synchronous broadcast systems (extended abstract). In: Proceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing, PODC 2000, pp. 113–121. ACM, New York (2000)CrossRefGoogle Scholar
  11. 11.
    Ghaffari, M., Haeupler, B., Khabbazian, M.: Randomized broadcast in radio networks with collision detection. In: Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing, PODC 2013, pp. 325–334. ACM, New York (2013)CrossRefGoogle Scholar
  12. 12.
    Ghaffari, M., Haeupler, B., Lynch, N., Newport, C.: Bounds on contention management in radio networks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 223–237. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Greenberg, A.G., Flajolet, P., Ladner, R.E.: Estimating the multiplicities of conflicts to speed their resolution in multiple access channels. J. ACM 34(2), 289–325 (1987)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Hayes, J.F.: An adaptive technique for local distribution. IEEE Transactions on Communications 26(8), 1178–1186 (1978)CrossRefGoogle Scholar
  15. 15.
    Huang, B., Moscibroda, T.: Conflict resolution and membership problem in beeping channels. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 314–328. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Jurdziński, T., Stachowiak, G.: Probabilistic algorithms for the wakeup problem in single-hop radio networks. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518, pp. 535–549. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Kowalski, D.R., Pelc, A.: Broadcasting in undirected ad hoc radio networks. In: Proceedings of the Twenty-second Annual Symposium on Principles of Distributed Computing, PODC 2003, pp. 73–82. ACM, New York (2003)CrossRefGoogle Scholar
  18. 18.
    Mitzenmacher, M., Upfal, E.: Probability and computing - randomized algorithms and probabilistic analysis. Cambridge University Press (2005)Google Scholar
  19. 19.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical report. Stanford University (1999)Google Scholar
  20. 20.
    Das Sarma, A., Molla, A.R., Pandurangan, G., Upfal, E.: Fast distributed pagerank computation. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 11–26. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Tsybakov, B.S., Mikhailov, V.A.: Free synchronous access of packets to a broadcast feedback channel. Problems Inform. Transmission 14(4), 259–280 (1978)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zhiyu Liu
    • 1
  • Maurice Herlihy
    • 1
  1. 1.Department of Computer ScienceBrown UniversityUSA

Personalised recommendations