Deterministic Leader Election in Multi-hop Beeping Networks

(Extended Abstract)
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8784)


We study deterministic leader election in multi-hop radio networks in the beeping model. More specifically, we address explicit leader election: One node is elected as the leader, the other nodes know its identifier, and the algorithm terminates at some point with the network being quiescent. No initial knowledge of the network is assumed, i.e., nodes know neither the size of the network nor their degree, they only have a unique identifier. Our main contribution is a deterministic explicit leader election algorithm in the synchronous beeping model with a run time of O(D logn) rounds. This is achieved by carefully combining a fast local election algorithm with two new techniques for synchronization and communication in radio networks.


Radio Network Collision Detection Overlay Network Leader Election Multiple Access Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Local and global properties in networks of processors (extended abstract). In: STOC, pp. 82–93 (1980)Google Scholar
  2. 2.
    Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Capetanakis, J.: Tree algorithms for packet broadcast channels. IEEE Transactions on Information Theory 25(5), 505–515 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chlebus, B.S., Kowalski, D.R., Pelc, A.: Electing a leader in multi-hop radio networks. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 106–120. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Chrobak, M., Gasieniec, L., Kowalski, D.R.: The wake-up problem in multihop radio networks. SIAM J. Comput. 36(5), 1453–1471 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed broadcast in radio networks of unknown topology. Theor. Comput. Sci. 302(1-3), 337–364 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–162. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Flury, R., Wattenhofer, R.: Slotted programming for sensor networks. In: IPSN, pp. 24–34 (2010)Google Scholar
  9. 9.
    Gasieniec, L., Pelc, A., Peleg, D.: The wakeup problem in synchronous broadcast systems. SIAM J. Discrete Math. 14(2), 207–222 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ghaffari, M., Haeupler, B.: Near optimal leader election in multi-hop radio networks. In: SODA, pp. 748–766 (2013)Google Scholar
  11. 11.
    Ghaffari, M., Haeupler, B.: Near optimal leader election in multi-hop radio networks. CoRR, abs/1210.8439v2 (April 2014)Google Scholar
  12. 12.
    Greenberg, A.G., Winograd, S.: A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels. J. ACM 32(3), 589–596 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hayes, J.F.: An adaptive technique for local distribution. IEEE Transactions on Communications 26(8), 1178–1186 (1978)CrossRefGoogle Scholar
  14. 14.
    Jurdzinski, T., Stachowiak, G.: Probabilistic algorithms for the wake-up problem in single-hop radio networks. Theory Comput. Syst. 38(3), 347–367 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kowalski, D.R., Pelc, A.: Leader election in ad hoc radio networks: A keen ear helps. Journal of Computer and System Sciences 79(7), 1164–1180 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kushilevitz, E., Mansour, Y.: An Ω(Dlog(N/D)) lower bound for broadcast in radio networks. SIAM J. Comput. 27(3), 702–712 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)Google Scholar
  18. 18.
    Pelc, A.: Activating anonymous ad hoc radio networks. Distributed Computing 19(5-6), 361–371 (2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    Tsybakov, B.S., Mikhailov, V.A.: Free synchronous packet access in a broadcast channel with feedback. Probl. Inf. Transm. 14(4), 259–280 (1978)MathSciNetGoogle Scholar
  20. 20.
    Willard, D.E.: Log-logarithmic selection resolution protocols in a multiple access channel. SIAM J. Comput. 15(2), 468–477 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Computer Engineering and Networks LaboratoryETH ZurichZurichSwitzerland

Personalised recommendations