Advertisement

Gravity Changes over Russian River Basins from GRACE

  • Leonid V. Zotov
  • C. K. Shum
  • Natalya L. Frolova
Chapter
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)

Abstract

Gravity Recovery and Climate Experiment (GRACE) twin satellites have been observing the mass transports of the Earth inferred by the monthly gravity field solutions in terms of spherical harmonic coefficients since 2002. In particular, GRACE temporal gravity field observations revolutionize the study of basin-scale hydrology, because gravity data reflect mass changes related to ground and surface water redistribution, ice melting, and precipitation accumulation over large scales. However, to use the GRACE data products, de-striping/filtering is required. We applied the multichannel singular spectrum analysis (MSSA) technique to filter GRACE data and separate its principal components (PCs) at different periodicities. Data averaging over the 15 largest river basins of Russia was performed. Spring 2013 can be characterized by the extremely large snow accumulation occurred in Russia. Melting of this snow induced large floods and abrupt increase of river levels. The exceptional maxima are evident from GRACE observations, which can be compared to the hydrological models, such as Global Land Data Assimilation System (GLDAS) or WaterGAP Global Hydrology Model (WGHM), and gauge data. Long-periodic climate-related changes were separated into PC 2. Finally, it was observed that there were mass increases in Siberia and decreases around the Caspian Sea. Overall trend over Russia demonstrates mass increase until 2009, when it had a maximum, followed by the decrease.

Keywords

Earth’s gravity field GRACE Hydrological changes MSSA 

Notes

Acknowledgements

This work is partially sponsored by RFBR grants N 12-02-31184, 15-05-02340, and N 13-05-00113. Paris observatory 2-month position was allocated for the first author. The Ohio State University (OSU) component of the research was partially supported by grants by NSF/IGFA Belmont Forum Project (Grant No. ICER-1342644) and by the Chinese Academy of Sciences/SAFEA International Partnership Program for Creative Research Teams (Grant No. KZZD-EW-TZ-05).

References

  1. IPCC Fifth Assessment Report (2013) Climate Change 2013: The Physical Science Basis. http://www.climatechange2013.org/
  2. Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, Garcia-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science. doi:10.1126/science.1201224Google Scholar
  3. Bettadpur S (2007) Level-2 gravity field product user handbook. ftp://podaac.jpl.nasa.gov/pub/grace/doc/L2-UserHandbook_v2.3.pdf
  4. Boergens E, Rangelova E, Sideris MG, Kusche J (2014) Assessment of the capabilities of the temporal and spatiotemporal ICA method for geophysical signal separation in GRACE data. JGR 119:4429–4447. doi:10.1002/2013JB010452Google Scholar
  5. Case K, Kruizinga G, Sien-Chong Wu (2004) GRACE level 1B data product user handbook. ftp://podaac.jpl.nasa.gov/pub/grace/doc/Handbook_1B_v1.2.pdf
  6. Duan X, Guo J, Shum C, van der Wal W (2009) Towards an optimal scheme for removing correlated errors in GRACE data. J Geodesy 83:1095–1106. doi:10.1007/s00190-009-0327-0CrossRefGoogle Scholar
  7. Guo J, Duan X, Shum C (2010) Non-isotropic filtering and leakage reduction for determining mass changes over land and ocean using GRACE data. Geophys J Int 181:290–302. doi:10.1111/j.1365-246X.2010.04534.xCrossRefGoogle Scholar
  8. Frappart F, Papa F, Guntner A, Ramillien G, Prigent C, Rossow W, Bonnet M (2010) Interannual variations of the terrestrial water storage in the Lower Ob’ Basin from a multisatellite approach. Hydrol Earth Syst Sci 14:2443–2453CrossRefGoogle Scholar
  9. Ghil M, Allen RM, Dettinger MD et al (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1):3.1–3.41CrossRefGoogle Scholar
  10. Golyandina N,Nekrutkin V, Zhigljavskyet A (2001) Analysis of time series structure: SSA and related techniques. Chapman & Hall/CRC, New York/LondonCrossRefGoogle Scholar
  11. Golyandina N (2004) Method “Caterpillar-SSA”: analysis of the time series. (In Russian) SPB., BBMGoogle Scholar
  12. Han S-C, Shum CK, Jekeli Ch et al (2005) Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement. Geophys J Int 163(1):18–25CrossRefGoogle Scholar
  13. Jollife IT (2001) Principal component analysis. Springer, New YorkGoogle Scholar
  14. Kenyon S et al (2007) Toward the next Earth gravitational model. In: SEG annual meeting, San-Antonio. http://library.seg.org/doi/abs/10.1190/1.2792518
  15. Klees R, Revtova E, Gunter B et al (2008) The design of an optimal filter for monthly GRACE gravity models. Geophys J Int 175(5768):417–432CrossRefGoogle Scholar
  16. Kusche J, Schmidt R, Petrovic S et al (2009) Decorrelated GRACE time-variable gravity solutions by GFZ and their validation using a hydrological model. J Geodesy 83:903–913CrossRefGoogle Scholar
  17. Landerer F, Dickey J, Zlotnicki V (2010) Terrestrial water budget of the Eurasian pan-Arctic from GRACE satellite measurements during 2003–2009. J Geophys Res Atmos, D 23115. doi: 10.1029/2010JD014584
  18. Panteleev VL (2000) Theory of figure of the Earth. Lectures in Russian. http://lnfm1.sai.msu.ru/grav/russian/lecture/tfe/index.html
  19. Paulson A, Zhong S, Wahr J (2007) Inference of mantle viscosity from GRACE and relative sea level data. Geophys J Int 171:497CrossRefGoogle Scholar
  20. Report on the Climate Peculiarities on the Territory of Russian Federation (2013). Hydrometeorological Center of Russia. http://www.meteoinfo.ru/climate
  21. Rangelova E, Wal W, Braun A et al (2007) Analysis of GRACE time-variable mass redistribution signals over North America by means of principal components analysis. J Geophys Res 112, F03002Google Scholar
  22. Rangelova E, Sideris M (2008) Contributions of terrestrial and GRACE data to the study of the secular geoid changes in North America. J Geodyn 46:131–143CrossRefGoogle Scholar
  23. Rangelova E et al (2010) Spatiotemporal analysis of the GRACE-derived mass variations in North America by means of multi-channel singular spectrum analysis. In: Mertikas SP (ed) Gravity, geoid and earth observation. IAG Symposia 135, Springer, Berlin/HeidelbergGoogle Scholar
  24. Reager JT, Thomas BF, Famiglietti JS (2014) River basin flood potential inferred using GRACE gravity observations at several months lead time. Nat Geosci. doi: 10.1038/ngeo2203 Google Scholar
  25. Sagitov MU (1979) Lunar gravimetry. Nauka, MoscowGoogle Scholar
  26. Schrama E, Wouters B, Lavallee D (2007) Signal and noise in gravity recovery and climate experiment (GRACE) observed surface mass variations. J Geophys Res 112, B08407. doi: 10.1029/2006JB004882 Google Scholar
  27. Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33, L08402. doi: 10.1029/2005GL025285 Google Scholar
  28. Tikhonov AN, Leonov AS, Yagola, AG (1998) Nonlinear ill-posed problems. Chapman and Hall, London/New YorkCrossRefGoogle Scholar
  29. Wahr J, Molenaar M, Bryan F (1998) Time variability of the earth’s gravity field: hydrological and oceanic effects and their possible detection using grace. J Geophys Res Solid Earth 103(B12):30,205–30,229. doi: 10.1029/98JB02844
  30. Wang YF, Yagola AG, Yang CC (2012) Computational methods for applied inverse problems, De Gruyter & Higher, Berlin/Education Press, BeijingCrossRefGoogle Scholar
  31. Wouters B, Schrama E (2007) Improved accuracy of GRACE gravity solution through empirical orthogonal function filtering of spherical harmonics. Geophys Res Lett 34, L23711. doi: 10.1029/2007GL032098 CrossRefGoogle Scholar
  32. Zonn IS, Glantz MH, Kostianoy AG, Kosarev AN (2010) The Caspian Sea encyclopedia. Springer, Berlin/LondonCrossRefGoogle Scholar
  33. Zotov LV (2005) Regression methods of Earth rotation prediction. Mosc Univ Phys Bull 5, 64–68 (in Russian)Google Scholar
  34. Zotov L, Shum CK (2009) Singular spectrum analysis of GRACE observations. In: AIP proceedings of the 9th Gamow summer school, OdessaGoogle Scholar
  35. Zotov L (2012) Application of multichannel singular spectrum analysis to geophysical fields and astronomical images. Adv Astron Space Phys 2:82–84Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Leonid V. Zotov
    • 1
    • 2
  • C. K. Shum
    • 3
    • 4
  • Natalya L. Frolova
    • 5
  1. 1.Sternberg Astronomical InstituteLomonosov Moscow State UniversityMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Division of Geodetic Science, School of Earth SciencesThe Ohio State UniversityColumbusUSA
  4. 4.Institute of Geodesy & GeophysicsChinese Academy of SciencesWuhanChina
  5. 5.Department of Hydrology, Faculty of GeographyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations