Partial Least Squares Modeling of Lunar Surface FeO Content with Clementine Ultraviolet-Visible Images

  • Lingzhi Sun
  • Zongcheng LingEmail author
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)


To accurately predict the iron abundance of the Moon has long been the goal for lunar remote sensing studies. In this paper, we present a new iron model based on partial least squares regression (PLS) method and apply this model to map the global lunar iron distribution using Clementine ultraviolet-visible (UVVIS) dataset. Our iron model has taken into account of more calibration sites other than Apollo and Luna sample-return sites and stations (i.e., the six additional highland or immature sites) in combination with more spectral bands (5 bands and 2 band ratios), in order to derive reliable FeO content and improve the robustness of the PLS model. By comparing the PLS-derived iron map with Lucey’s band-ratio FeO map and Lawrence’s Lunar Prospector (LP) FeO map, the differences are mostly within 1 wt% in FeO content. Moreover, PLS-derived FeO is more consistent with LP’s result which was derived by direct measurement of Fe gamma-ray line (7.6 MeV) rather than the Lucey’s experiential algorithm applying only two bands (750, 950 nm) of Clementine UVVIS dataset. With a global mode of 5.1 wt%, PLS-derived iron map is also validated by FeO abundances of lunar feldspathic meteorites and in support of the lunar magma ocean hypothesis.


Lunar iron content Partial least squares regression (PLS) Spectroscopy Clementine UVVIS 



This work was supported by the National Natural Science Foundation of China (11003012, U1231103), the Natural Science Foundation of Shandong Province (ZR2011AQ001), Independent Innovation Foundation of Shandong University (2013ZRQP004), and Graduate Innovation Foundation of Shandong University at WeiHai, GIFSDUWH (yjs13026).


  1. Blewett DT, Lucey PG, Hawke BR (1997) Clementine images of the lunar sample-return stations: refinement of FeO and TiO2 mapping techniques. J Geophys Res 102(E7):16319–16325CrossRefGoogle Scholar
  2. Eliason E, Isbell C, Lee E et al (1999) The Clementine UVVIS global lunar mosaic. Cited 20 May 2013.
  3. Fischer EM, Pieters CM (1994) Remote determination of exposure degree and iron concentration of lunar soils using VIS-NIR spectroscopic methods. Icarus 111(2):475–488CrossRefGoogle Scholar
  4. Fischer EM, Pieters CM (1996) Composition and exposure age of the Apollo 16 Cayley and Descartes regions from Clementine data: normalizing the optical effects of space weathering. J Geophys Res 101(E1):2225–2234CrossRefGoogle Scholar
  5. Gillis JJ, Jolliff BL, Korotev RL (2004) Lunar surface geochemistry: global concentrations of Th, K, and FeO as derived from lunar prospector and Clementine data. Geochim Cosmochim Acta 68(18):3791–3805CrossRefGoogle Scholar
  6. Jin SG, Arivazhagan S, Araki H (2013) New results and questions of lunar exploration from SELENE, Chang’E-1, Chandrayaan-1 and LRO/LCROSS. Adv Space Res 52(2):285–305CrossRefGoogle Scholar
  7. Korotev RL (2005) Lunar geochemistry as told by lunar meteorites. Chemie der Erde 65:297–346CrossRefGoogle Scholar
  8. Korotev RL, Jolliff BL, Rockow KM (1996) Lunar meteorite Queen Alexandra Rang 93069 and the iron concentration of the lunar highlands surface. Meteorit Planet Sci 31:909–924CrossRefGoogle Scholar
  9. Korotev RL, Jolliff BL, Jolliff RA (2003) Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust. Geochim Cosmochim Acta 67(24):4895–4923CrossRefGoogle Scholar
  10. Lawrence DJ, Feldman WC, Elphic RC (2002) Iron abundances on the lunar surface as measured by the Lunar Prospector gamma-ray and neutron spectrometers. J Geophys Res 107(E12):5130CrossRefGoogle Scholar
  11. Le Mouelic S, Lucey PG, Langevin Y (2002) Calculating iron contents of lunar highland materials surrounding Tycho crater from integrated Clementine UV-visible and near-infrared data. J Geophys Res 107:E10,5074Google Scholar
  12. Li L (2006) Partial least squares modeling to quantify lunar soil composition with hyperspectral reflectance measurements. J Geophys Res 111:E04102Google Scholar
  13. Li L (2008) Quantifying lunar soil composition with partial least squares modeling of reflectance. Adv Space Res 42:267–274CrossRefGoogle Scholar
  14. Li L (2011) Quantifying TiO2 abundance of lunar soils: partial least squares and stepwise multiple regression analysis for determining causal effect. J Earth Sci 22(5):549–565CrossRefGoogle Scholar
  15. Ling Z, Zhang J, Liu J et al (2011) Preliminary results of FeO mapping using imaging interferometer data from Chang’E-1. Chin Sci Bull 56(4–5):376–379CrossRefGoogle Scholar
  16. Liu B, Liu J, Zhang G et al (2013) Reflectance conversion methods for the VIS/NIR imaging spectrometer aboard the Chang’E-3 lunar rover: based on ground validation experiment data. Res Astron Astrophys 13(7):862–874CrossRefGoogle Scholar
  17. Lucey PG (2004) Mineral maps of the moon. Geophys Res Lett 31:L08701CrossRefGoogle Scholar
  18. Lucey PG, Taylor GJ, Malaret E (1995) Abundance and distribution of iron on the moon. Science 268(5214):1150–1153CrossRefGoogle Scholar
  19. Lucey PG, Blewett DT, Hawke BR (1998) Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. J Geophys Res 103(E3):3679–3699CrossRefGoogle Scholar
  20. Lucey PG, Blewett DT, Jolliff BL (2000) Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet–visible images. J Geophys Res 105(E8):20297–20305CrossRefGoogle Scholar
  21. Mckay DS, Fruland RM, Heiken GH (1974) Grain size and the evolution of lunar soils. In: Proceedings of the lunar science conference 3rd, Pergamon Press, New York, pp 983–995Google Scholar
  22. Milliken RE, Mustard JF (2005) Quantifying absolute water content of minerals using near-infrared reflectance spectroscopy. J Geophys Res 110:E12001CrossRefGoogle Scholar
  23. Pieters CM, Stankevich DG, Shkuratov YG et al (2002) Statistical analysis of the links among lunar mare soil mineralogy, chemistry, and reflectance spectra. Icarus 155:285–298CrossRefGoogle Scholar
  24. Pieters CM, Shkuratov Y, Kaydash V et al (2006) Lunar soil characterization consortium analysis: pyroxene and maturity estimates derived from Clementine image data. Icarus 184:83–101CrossRefGoogle Scholar
  25. Warren PH, Haskin L (1991) Lunar chemistry. In: Heiken GH et al (eds) Lunar sourcebook. Cambridge University Press, Cambridge, pp 357–474Google Scholar
  26. Whiting ML, Li L, Ustin SL (2004) Predicting water content using Gaussian model on soil spectra. Remote Sens Environ 89:535–552CrossRefGoogle Scholar
  27. Wilcox BB, Lucey PG, Gillis JJ (2005) Mapping iron in the lunar mare: an improved approach. J Geophys Res 110:E1101Google Scholar
  28. Wood JA, Dickey JS, Jr, Marvin UB et al (1970) Lunar anorthosites and a geophysical model of the moon. In: Proceedings of the Apollo 11 lunar science conference, Pergamon Press, New York, pp 965–988Google Scholar
  29. Wu Y, Xue B, Zhao B et al (2012) Global estimates of lunar iron and titanium contents from the Chang’E-1 IIM data. J Geophys Res 117:E02001Google Scholar
  30. Yen AS, Murray BC, Rossman GR (1998) Water content of the Martian soil: laboratory simulations of reflectance spectra. J Geophys Res 103:11125–11133CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Space Science and Physics, Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space SciencesShandong UniversityWeihaiChina

Personalised recommendations