Accelerated Simulation of P Systems on the GPU: A Survey

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 472)


The acceleration of P system simulations is required increasingly, since they are at the core of model verification and validation processes. For this purpose, GPU computing is an alternative to more classic approaches in Parallel Computing. It provides a manycore platform with a level of high parallelism at a low cost. In this paper, we survey the developments of P systems simulators using the GPU, and analyze some performance considerations.


Membrane Computing Parallel Computing GPGPU 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cecilia, J.M., García, J.M., Guerrero, G.D., Martínez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.: Simulation of P systems with Active Membranes on CUDA. Briefings in Bioinformatics 11(3), 313–322 (2010)CrossRefGoogle Scholar
  2. 2.
    Cecilia, J.M., García, J.M., Guerrero, G.D., Martínez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J.: Simulating a P system based efficient solution to SAT by using GPUs. Journal of Logic and Algebraic Programming 79(6), 317–325 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cecilia, J.M., García, J.M., Guerrero, G.D., Martínez-del-Amor, M.A., Pérez-Jiménez, M.J., Ujaldón, M.: The GPU on the simulation of cellular computing models. Soft Computing 16(2), 231–246 (2012)CrossRefGoogle Scholar
  4. 4.
    Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J.: Applications of Membrane Computing in Systems and Synthetic Biology. Series: Emergence, Complexity and Computation, vol. 7. Springer (2014)Google Scholar
  5. 5.
    Gutiérrez, A., Alonso, S.: P systems: from theory to implementation, ch. 17, pp. 205–226 (2010)Google Scholar
  6. 6.
    Harris, M.: Mapping computational concepts to GPUs. In: ACM SIGGRAPH 2005 Courses, NY, USA (2005)Google Scholar
  7. 7.
    Kirk, D., Hwu, W.: Programming Massively Parallel Processors: A Hands on Approach, MA, USA (2010)Google Scholar
  8. 8.
    Nguyen, V., Kearney, D.A., Gioiosa, G.: Balancing performance, flexibility, and scalability in a parallel computing platform for membrane computing applications. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 385–413. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Martínez-del-Amor, M.A.: Accelerating Membrane Systems Simulators using High Performance Computing with GPU. Ph.D. thesis, University of Seville (2013)Google Scholar
  10. 10.
    Martínez-del-Amor, M.A., Karlin, I., Jensen, R.E., Pérez-Jiménez, M.J., Elster, A.C.: Parallel simulation of probabilistic P systems on multicore platforms. In: Proceedings of the Tenth Brainstorming Week on Membrane Computing, vol. II, pp. 17–26 (2012)Google Scholar
  11. 11.
    Martínez-del-Amor, M.A., Pérez-Carrasco, J., Pérez-Jiménez, M.J.: Characterizing the parallel simulation of P systems on the GPU. International Journal of Unconventional Computing 9(5-6), 405–424 (2013)Google Scholar
  12. 12.
    Martínez-del-Amor, M.A., Pérez-Hurtado, I., Gastalver-Rubio, A., Elster, A.C., Pérez-Jiménez, M.J.: Population Dynamics P Systems on CUDA. In: Gilbert, D., Heiner, M. (eds.) CMSB 2012. LNCS, vol. 7605, pp. 247–266. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Păun, G.: Computing with Membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000) and Turku Center for CS-TUCS Report No. 208 (1998)Google Scholar
  14. 14.
    Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press, USA (2010)Google Scholar
  15. 15.
    NVIDIA CUDA website (2014),
  16. 16.
    The PMCGPU project (2013),

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Research Group on Natural Computing, Dept. Computer Science and Artificial IntelligenceUniversity of SevilleSevillaSpain

Personalised recommendations