Recombinant Virus-like Particle Protein Vaccines

  • Robert D. Sitrin
  • Qinjian Zhao
  • Clinton S. Potter
  • Bridget Carragher
  • Michael W. Washabaugh


Viral diseases offer a major challenge to vaccine development because of the complex nature of virus structures and the large size of the virus particle needed to generate an effective immune response. Viral diseases frequently stimulate both Th2 (antibody-mediated) and Th1 (cell-mediated) immune pathways.


High Performance Liquid Chromatography Vaccine Product CHIKV Infection Potency Assay Therapeutic Protein Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank John A. Gilly, Leidos Biomedical Research, Inc. Vaccine Research Center (NIH) at Frederick and Charles R. Petrie, Takeda Vaccines, Inc. Bozeman, MT for contributing sections on Chikungunya and Norovirus, respectively.


  1. Abbott_Diagnostics (2012) 40 years of hepatitis leadership.
  2. Akahata W, Nabe LG (2012) A specific domain of the Chikungunya virus E2 protein regulates particle formation in human cells: implications for alphavirus vaccine design. J Virol 86:8879–8883Google Scholar
  3. Capen R, Shank-Retzlaff M, Sings H, Esser M, Sattler C, Washabaugh M et al. (2007) Establishing potency specifications for antigen vaccines. BioProcess Int 5:30–42Google Scholar
  4. CHMP (2006) European medicines agency final report GARDASIL scientific discussion. EMEAGoogle Scholar
  5. Cohen S, Ward G, Tsai P (1999) MALDI-MS characterization of human papillomavirus protein. Proceedings of the 47th American society for mass spectrometry conference, Dallas, TX, pp 13–17Google Scholar
  6. Cohen S, Ward G, Oswald B, Tsai P (2000) A novel approach to analyze membrane proteins and peptides by mass spectrometry. Proceedings of the 48th American society for mass spectrometry conference, Long Beach, CAGoogle Scholar
  7. Cox M (2011) A fast track influenza virus vaccine produced in insect cells. J Invertebr Pathol 107:531–541CrossRefGoogle Scholar
  8. Cox M (2012) Recombinant protein vaccines produced in insect cells. Vaccine 30:1759–1766PubMedCrossRefGoogle Scholar
  9. Descamps J, Giffroy D, Remy E, Mortiaux F, Mareschal J-C, Ponsar C et al. (2011) A case study of development, validation and acceptance of a non-animal method for assessing human vaccine potency. Procedia Vaccinol 5:184–191Google Scholar
  10. Deschuyteneer M, Elouahabi A, Plainchamp D, Plisnier M, Soete D, Corazza Y et al (2010) Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in Cervarix, the ASO4-adjuvanted HPV-16 and -18 cervical cancer vaccine. Human Vaccines 6:407–419PubMedCrossRefGoogle Scholar
  11. Dunne E, Datta S (2008) A review of prophylactic human papillomavirus vaccines: recommendations and monitoring in the US. Cancer 113:2995–3003PubMedCrossRefGoogle Scholar
  12. Eckels K, Harrison V, Hetrick F (1970) Chikungunya virus vaccine prepared by tween-ether extraction. Appl Microbiol 19:321–325Google Scholar
  13. EP (2008) Hepatitis B vaccine (rDNA) 01/2008:1056. In: EP, European Pharmacopea, EDQMGoogle Scholar
  14. EP (2010a) Human papillomavirus vaccine (rDNA) 01/2010:2441. In: European Pharmacopeia, EDQMGoogle Scholar
  15. EP (2010b) Assay of hepatitis B vaccine 01/2008:20715. In: European Pharmacopea, EDQMGoogle Scholar
  16. Fischman J (2006) Sticking it to cancer. US news and world reportGoogle Scholar
  17. Fox C (2012) Characterization of TLR4 agonist effects on alhydrogel(R) sedimentation: a novel application of laser scattering optical profiling. J Pharm Sci 101:4357–4364PubMedCrossRefGoogle Scholar
  18. Gavilanes F, Gonzalez-Ros JM, Peterson DL (1982) Structure of hepatitis B surface antigen. J Biol Chem 257:7770–7777PubMedGoogle Scholar
  19. Gavilanes F, Gomez-Gutierrez J, Miguel Gonzalez-Pos J, Ferragut J, Guerrero E et al (1990) Hepatitis B surface antigen role of lipids in maintaining the structural and antigenic properties of protein components. Biochem J 265:857–864PubMedCentralPubMedGoogle Scholar
  20. Gilbert R, Beales L, Blond D, Simon M, Lin B, Chisari F et al. (2005) Hepatitis B small surface antigen particles are octahedral. Proc Natl Acad Sci USA 102:14783–14788Google Scholar
  21. Grachev VP, Magrath DI (1993) Quality control of hepatitis B vaccine. In: Ellis RW (ed) Hepatitis B vaccines in clinical practice. Dekker, New York, pp 103–121Google Scholar
  22. Greiner V, Egele C, Oncul S, Ronzon F, Manin C, Klymchenko A et al (2010) Characterization of the lipid and protein organization in HBsAg viral particles by steady-state and time-resolved fluorescence spectroscopy. Biochimie 92:994–1002PubMedCrossRefGoogle Scholar
  23. Guha S, Li M, Tarlov MJ, Zachariah MR (2012) Electrospray–differential mobility analysis of bionanoparticles. Trends Biotechnol 291–300Google Scholar
  24. Harrison S (1990) Fields virology. In: Fields virology, vol 2. Raven, New York, pp 37–61Google Scholar
  25. Hemling ME, Carr SA, Capiau C, Petre J (1988) Structural characterization of recombinant hepatitis B surface antigen protein by mass spectrometry. Biochemistry 27:699–705PubMedCrossRefGoogle Scholar
  26. Hilleman M (1993) Plasma-derived hepatitis B vaccine: a breakthrough in preventive medicine. In Ellis RW (ed) Hepatitis B vaccines in clinical practice. Dekker, New York, pp 17–39Google Scholar
  27. Le Duff Y, Blanchet M, Sureau C (2009) The pre-S1 and antigenic loop infectivity determinants of the hepatitis B virus envelope proteins are functionally independent. J Virol 3:12443–12451CrossRefGoogle Scholar
  28. Le Tallec D, Doucet D, Ekouahabii P, Deschuyteneer M, Deschamps M (2009) Cervarix, The GSK HPV-16/HPV-18 AS04-adjuvanted cervical cancer vaccine, demonstrates stability upon lon-term storage and under simulated cold chain break conditions. Human Vaccines 5:467–474PubMedCrossRefGoogle Scholar
  29. Li Y, Bi J, Zhao W, Huang Y, Sun L, Zeng A-P et al (2007) Characterization of the large size aggregation of hepatitis B virus surface antigen (HBsAg) formed in ultrafiltraion process. Process Biochem 42:315–319CrossRefGoogle Scholar
  30. Li S, Tang X, Seetharaman J, Yang C, Gu Y et al. (2009) Dimerization of hepatitis E virus capsid protein E2 s domain is essential for virus–host interaction. PLoS Pathog 5(8):e1000537Google Scholar
  31. Mach H, Volkin D, Troutman R, Wang B, Luo Z, Jansen K et al (2006) Disassembly and reassembly of yeast derived recombinant human papillomavirus-like particles (HPV VLPs). J Pharm Sci 95:2195–2206PubMedCrossRefGoogle Scholar
  32. MacNair JEDT (2005) Alignment of absolute and relative molecular size specifications for a polyvalent pneumococcal polysaccharide vaccine (PNEUMOVAX 23). Biologicals 33:49–58PubMedCrossRefGoogle Scholar
  33. Mangold C, Unckell F, Wer RM, Streeck R (1995) Secretion and antigenicity of hepatitis B virus small envelope proteins lacking cysteines in the major antigenic region. Virology 211:535–543PubMedCrossRefGoogle Scholar
  34. Markowitz L, Hariri S, Lin C, Dunne E, Steinau M, McQuillan G et al (2013) Reduction in human papillomavirus (HPV) prevalence among young women following HPV vaccine introduction in the United States, national health and nutrition examination surveys, 2003–2010. J Infect Dis 208:385–393PubMedCrossRefGoogle Scholar
  35. Mead P, Slutsker L, Dietz V, McCaig L, Bresee J, Shapiro C et al (1999) Food-related illness and death in the United States. Emerg Infect Dis 607–625Google Scholar
  36. Milne J, Borgnia M, Bartesaghi A, Tran E, Earl L, Schauder D et al (2013) Cryo-electron microscopy–a primer for the non-microscopist. FEBS J 280:28–45PubMedCentralPubMedCrossRefGoogle Scholar
  37. Mohr J, Chuan Y, Wu Y, Lua L, Middelberg A (2013) Virus-like particle formulation optimization by miniaturized high-throughput screening. Methods 60:248–256Google Scholar
  38. Mulder A, Carragher B, Towne V, Meng YW, Dieter L, Potter C et al. (2012) Toolbox for non-intrusive structural and functional analysis of recombinant VLP based vaccines: a case study with hepatitis B vaccine. PLos One 7:e33235Google Scholar
  39. Murphy G, Jensen G (2007) Electron cryotomography. Biotechniques 43:413PubMedCrossRefGoogle Scholar
  40. Orlova E, Saibil H (2011) Structural analysis of macromolecular assemblies by electron microscopy. Chem Rev 111:7710–7748Google Scholar
  41. Patel M, Widdowson M, Glass R, Akazawa K, Vinje J, Parashar U (2008) Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg Infect Dis 2008:1224–1231Google Scholar
  42. PDA (2012) A-VAX: applying quality by design to vaccines.
  43. Pease LF, Lipin D, Tsai D-H, Zachariah M, Lua L, Tarlov M et al (2009) Quantitative characterization of virus-like particles by asymmetrical flow field flow fractionation, electrospray differential mobility analysis, and transmission electron microscopy. Biotechnol Bioeng 102:845–855PubMedCrossRefGoogle Scholar
  44. Peterson DL (1981) Isolation and characterization of the major protein and glycoprotein of hepatitis B surface antigen. J Biol Chem 256:6975–6983PubMedGoogle Scholar
  45. Peterson DL, Nath N, Gavilanes F (1982) Structure of hepatitis B surface antigen correlation of subtype with amno acid sequence and locatio of the carbohydrate moeity. J Biol Chem 257:10414–10420PubMedGoogle Scholar
  46. Petre J, Van Wijnendaele F, De Neys B, Conrath K, Van Opstal O, Hauser P et al (1987) Development of a hepatitis B vaccine from transformed yeast cells. Postgrad Med J 63(Suppl 2):73–81PubMedGoogle Scholar
  47. Ross R (1956) The Newala epidemic. III. The virus: isolation, pathogenic properties and relationship to the epidemic. J Hyg 54:177–191Google Scholar
  48. Salisse J, Sureau C (2009) A function essential to viral entry underlies the hepatitis B virus a determinant. J Virol 83:9321–9328PubMedCentralPubMedCrossRefGoogle Scholar
  49. Schofield T (2002) In vito versus in vivo concordance: a case study of the replacement of an animal potency test with an immunochemical assay. In: Karger BF (ed) Advancing science and elimination of the use of laboratory animals for development and control of vaccines and hormones. Karger, Basel, pp 299–304Google Scholar
  50. Shank-Retzlaff M, Wang E, Morley T, Anderson C, Hamm M, Brown M et al (2005) Correlation between mouse potency and in vitro relative potency for human papillomavirus type 16 virus like particles and gardasil vaccine samples. Human Vaccines 1:191–197PubMedCrossRefGoogle Scholar
  51. Shank-Retzlaff M, Zhao Q, Anderson C, Hamm M, High K, Nguyen M et al (2006) Evaluation of the thermal stability of gardasil. Human Vaccines 2:147–154PubMedCrossRefGoogle Scholar
  52. Shi L, Sings H, Bryan J, Wang B, Wang Y, Mach H et al (2007) GARDASIL: prophylactic human papillomarvirus vaccine development—from bench top to bed-side. Clin Phamacol Ther 81:259–264CrossRefGoogle Scholar
  53. Short J, Chen S, Roseman A, Butler P, Crowther RA (2009) Structure of hepatitis B surface antigen from subviral tubes determined by electron cryomicroscopy. J Mol Biol 390:135–141PubMedCrossRefGoogle Scholar
  54. Sitrin R (2010) After the license approval: how analytics can keep you in the market. In: Vaccine technology III, Nuevo Vallarta, Mexico: engineering conferences international,
  55. Sitrin RD, Wampler DE, Ellis RW (1993) Survey of licensed hepatitis B vaccines and their production processes. In: Ellis RW (ed) Hepatitis B vaccines in clinical practice. Dekker, New York, pp 83–102Google Scholar
  56. Stephenne J (1990) Development and production aspects of a recombinant yeast-derived hepatitis B vaccine. Vaccine 8 suppl:S69-S73Google Scholar
  57. Stirk H, Thornton J, Howard C (1992) A topological model for hepatitis B surface antigen. Intervirology 33:148–158PubMedGoogle Scholar
  58. Towne V, Zhao Q, Brown M, Finnefrock A (2013) Pairwise antibody footprinting using suface plasmon resonance technology to characterize human papilloamavirus type 16 virus like particles with direct anti-HPV antibody immobilization. J Immunol Methods 388:1–7PubMedCrossRefGoogle Scholar
  59. Wampler DE, Lehman ED, Bodger J, McAleer WL, Scolnick EM (1985) Multiple chemical forms of hepatitis B surface antigen produced in yeast. Proc Nat Acad Sci 82:6830–6834PubMedCentralPubMedCrossRefGoogle Scholar
  60. WHO (1988) Requirements for hepatitis B vaccine prepared from plasma. Requirements for biological substances 31. World health organization technical report series 771; annex 8, pp 181 = -207Google Scholar
  61. WHO (1989) Requirements for hepatitis B vaccines made by recombinant DNA techniques. WHO, Requirements for biological substances no 45. World health organization, technical report series, no 786, pp 38–70Google Scholar
  62. WHO (2006) Guidelines to assure the quality, safety and efficacy of recombinant papillomavirus virus-like particle vaccines. Expert comitttee on biological standardization WHO/BS/06.2050Google Scholar
  63. Yang C, Pan H, Wei M, Zhang X, Wang N, Gu Y et al (2013) Hepatitis E virus capsid protein assembles in 4M urea in the presence of salts. Protein Sci 22:314–326Google Scholar
  64. Zhang J, Gu S, Li S, He Z, Huang G, Zhuang H et al (2005) Analysis of hepatitis E virus neutralization sites using monoclonal antibodies directed against a virus capsid protein. Vaccine 23:2881–2892PubMedCrossRefGoogle Scholar
  65. Zhao Q, Wang Y, Freed D, Fu T-M, Gimenez J, Sitrin R et al (2006) Maturation of recombinant hepatitis B surface antigen particles. Human Vaccines 2:174–180PubMedCrossRefGoogle Scholar
  66. Zhao Q, Towne V, Brown M, Wang Y, Abraham D, Oswald CB et al (2011a) In-depth process understanding of RECOMBIVAX HB maturation and potential epitope improvements with redox treatment: multifaceted biochemical and immunochemical characterization. Vaccine 29:7936–7941PubMedCrossRefGoogle Scholar
  67. Zhao Q, Wang Y, Abraham D, Towne V, Kennedy R, Sitrin R (2011b) Real time monitoring aof antigenicity development of HBsAg virus like particles (VLPs) during heat- and reox-treatment. Biochem Biophys Res Commun 408:447–453PubMedCrossRefGoogle Scholar
  68. Zhao Q, Allen M, Wang Y, Wang B, Wang N, Shi L et al (2012a) Disassembly and reassembly improves morphology and thermal stability of human papillomavirus type 16 virus like particles. Nanomed Technol Biol Med 8:1182–1189CrossRefGoogle Scholar
  69. Zhao Q, Modis Y, High K, Towne V, Meng Y, Alexandrof J et al (2012b) Disassembly and reassembly of human papillomavirus virus like particle produces more virion like antibody activity. Virol J 9:1–13CrossRefGoogle Scholar
  70. Zhao Q, Jun Z, Jun Wu T, Li S-W, Ng M-H et al (2013a) Antigenic determinants of hepatitis E virus and vaccine-induced immunogenicity and efficacy. J Gastroenterol 48:159–168PubMedCentralPubMedCrossRefGoogle Scholar
  71. Zhao Q, Li S, Yu H, Xia N, Modis Y (2013b) Virus-like particle-based human vaccines: quality assessment based on structural and functinal properties. Trends Biotechnnol 31:654–663Google Scholar
  72. Zhao Q, Potter C, Carragher B, Alexandroff J, Towne V, Abraham D et al (2014) Use of cryo electron microscopy to visualize the structural features and binding to functional antibodies of virus-like particles in GARDASIL®. Human Vaccines Immunother 10:734–739CrossRefGoogle Scholar
  73. Zhu F, Zhang J, Zhang X, Zhou C, Wang Z, Huang S et al (2010) Efficacy and safety of a recombinant hepatitis E vaccine in healthy adults: a large-scale, randomised, double-blind placebo controlled, phase 3 trial. Lancet 376(9744):895–902PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Robert D. Sitrin
    • 1
  • Qinjian Zhao
    • 2
  • Clinton S. Potter
    • 3
    • 4
  • Bridget Carragher
    • 3
    • 4
  • Michael W. Washabaugh
    • 5
  1. 1.SitrinSolutions, LLCLafayette HillUSA
  2. 2.State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public HealthXiamen UniversityXiamenChina
  3. 3.NanoImaging Services, Inc.San DiegoUSA
  4. 4.Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaUSA
  5. 5.MedImmune, Inc.GaithersburgUSA

Personalised recommendations