Advertisement

Multivariate Landing Page Optimization Using Hierarchical Bayes Choice-Based Conjoint

  • Stefanie SchreiberEmail author
  • Daniel Baier
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

Landing pages are defined to be the home page of a website (e.g., an online shop) or a specific webpage that appears in response to an ad. Their design plays an important role in decreasing the number of visitors leaving the website without any activity (e.g., clicking a banner, purchasing a product). For improving landing pages, the traditional A/B testing approach offers a simple but limited solution to evaluate two different variants. However, recently, new approaches have been introduced. Webpages with multiple variations of website elements (e.g., navigation menu, advertising banners) generated through experimental designs are rated by customers (Gofman et al., J. Consum. Mark. 26(4):286–298, 2009).The paper explores a new approach for multivariate landing page optimization using hierarchical Bayes choice-based conjoint analysis (CBC/HB) that combines the potential to test a large number of variants with a short survey. The new approach is discussed and applied to improve the online shop of a popular German Internet pharmacy. Choice data are collected from a large sample of customers. From the results an optimal landing page is derived and implemented.

Keywords

Choice Task Attribute Level Conjoint Analysis Online Shop Banner Advertising 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allenby, G. M., Arora, N., & Ginter, J. L. (1995). Incorporating prior knowledge into the analysis of conjoint studies. Journal of Marketing Research, 32(2), 152–162.CrossRefGoogle Scholar
  2. Allenby, G. M., & Ginter, J. L. (1995). Using extremes to design products and segment markets. Journal of Marketing Research, 32(4), 392–403.CrossRefGoogle Scholar
  3. Ash, T., Ginty, M., & Page, R. (2011). Landing page optimization: The definitive guide to testing and tuning for conversions. Hoboken, NJ: Wiley.Google Scholar
  4. Cohen, S. H. (1997). Perfect union. Marketing Research, 9(1), 12–17.Google Scholar
  5. GfK (2011). CP Panel Internetapotheke 2011. Nuremberg: GfK - Gesellschaft für Konsumforschung.Google Scholar
  6. Gofman, A. (2007). Consumer driven multivariate landing page optimization: Overview, issues, and outlook. Transactions on Internet Research, 3(2), 7–9.Google Scholar
  7. Gofman, A., Moskowitz, H. R., Bevolo, M., & Mets, T. (2010). Decoding consumers perceptions of premium products with rule-developing experimentation. Journal of Consumer Marketing, 27(5), 425–436.CrossRefGoogle Scholar
  8. Gofman, A., Moskowitz, H. R., & Mets, T. (2009). Integrating science into web design: Consumer driven website optimization. Journal of Consumer Marketing, 26(4), 286–298.CrossRefGoogle Scholar
  9. Green, P. E., Carroll, J. D., & Goldberg, S. M. (1981). A general approach to product design optimization via conjoint analysis. Journal of Marketing, 45(1), 17–37.CrossRefGoogle Scholar
  10. Johnson, R., & Orme, B. (2010). Including holdout choice tasks in conjoint studies. Sawtooth software research paper series (pp. 1–3). Sequim, WA: Sawtooth SoftwareGoogle Scholar
  11. Lenk, P. J., Desarbo, W. S., Green, P. E., & Young, M. R. (1996). Hierarchical Bayes conjoint analysis: Recovery of part-worth heterogeneity from reduced experimental designs. Marketing Science, 15(2), 173–191.CrossRefGoogle Scholar
  12. Louviere, J. J., & Woodworth, G. G. (1983). Design and analysis of simulated choice and allocation experiments: An approach based on aggregate date. Journal of Marketing Research, 20(4), 350–367.CrossRefGoogle Scholar
  13. Maxl, E., & Fahrleitner, P. (2007). Werbewirkung von Onlinewerbeformen. Transfer, Werbeforschung & Praxis, 2(3), 36–41.Google Scholar
  14. Mcfadden, D. (1974). Conditional logit analysis of qualitative choice behaviour. In: P. Zarembka (Ed.), Frontiers in econometrics (pp. 105–142). New York: Academic Press.Google Scholar
  15. Sattler, H., & Hartmann, A. (2008). Commercial use of conjoint analysis. In M. Höck, & K.-I. Voigt (Eds.), Operations management in theorie und praxis: Aktuelle entwicklungen des industriellen managements (pp. 103–119). Wiesbaden: Gabler.CrossRefGoogle Scholar
  16. Sawtooth Software (2009). The CBC/HB system for hierarchical Bayes estimation version 5.0 technical paper. Orem, UT: Sawtooth Software.Google Scholar
  17. Sawtooth Software (2013). The CBC system for choice-based conjoint analysis version 8. Orem, UT: Sawtooth Software.Google Scholar
  18. Selka, S., & Baier, D. (2014). Kommerzielle Anwendung auswahlbasierter Verfahren der Conjointanalyse: Eine empirische Untersuchung zur Validitätsentwicklung. Marketing Zeitschrift für Forschung und Praxis, 36(1), 54–64.Google Scholar
  19. Selka, S., Baier, D., & Kurz, P. (2014). The validity of conjoint analysis: An investigation of commercial studies over time. Studies in Classification, Data Analysis, and Knowledge Organization, 48, 227–234.CrossRefGoogle Scholar
  20. Tatler, B. W. (2007). The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions. Journal of Vision, 7(14), 4, 1–17.Google Scholar
  21. Train, K. (2009). Discrete choice methods with simulation. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Business Administration and EconomicsBrandenburg University of Technology Cottbus-SenftenbergCottbusGermany

Personalised recommendations