Advertisement

Clustering of Solar Irradiance

  • Miloud Bessafi
  • Franciscos de A.T. de Carvalho
  • Philippe Charton
  • Mathieu Delsaut
  • Thierry Despeyroux
  • Patrick Jeanty
  • Jean Daniel Lan-Sun-Luk
  • Yves Lechevallier
  • Henri Ralambondrainy
  • Lionel Trovalet
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

The development of grid-connected photovoltaic power systems leads to new challenges. The short or medium term prediction of the solar irradiance is definitively a solution to reduce the storage capacities and, as a result, authorizes to increase the penetration of the photovoltaic units on the power grid. We present the first results of an interdisciplinary research project which involves researchers in energy, meteorology, and data mining, addressing this real-world problem. In Reunion Island from December 2008 to March 2012, solar radiation measurements have been collected, every minute, using calibrated instruments. Prior to prediction modelling, two clustering strategies have been applied for the analysis of the data base of 951 days. The first approach combines the following proven data-mining methods. principal component analysis (PCA) was used as a pre-process for reduction and denoising and the Ward Hierarchical and K-means methods to find a partition with a good number of classes. The second approach uses a clustering method that operates on a set of dissimilarity matrices. Each cluster is represented by an element or a subset of the set of objects to be classified. The five meaningfully clusters found by the two clustering approaches are compared. The interest and disadvantages of the two approaches for classifying curves are discussed.

Notes

Acknowledgements

This work received financial support from Europe, Regional Reunion Island Council and the French government through the ERDF (European Regional Development Fund) and ADEME (French Environment and Energy Management Agency).

References

  1. de Carvalho, F. A. T., Csernel, M., & Lechevallier, Y. (2009). Clustering constrained symbolic data. Pattern Recognition Letter, 30, 1037–1045.CrossRefGoogle Scholar
  2. de Carvalho, F. A. T., Lechevallier, Y., & De Melo, F. M. (2012). Partitioning hard clustering algorithms based on multiple dissimilarity matrices. Pattern Recognition, 45, 447–464.CrossRefzbMATHGoogle Scholar
  3. Diday, E., & Govaert, G. (1977). Classification automatique avec distances adaptatives. R.A.I.R.O. Informatique Computer Science, 11(4), 329–349.zbMATHMathSciNetGoogle Scholar
  4. D’urso, P., & Vichi, M. (1998). Dissimilarities between trajectories of a three-way longitudinal data set. In A. Rizzi, M. Vichi, & H.-H. Bock (Eds.), Advances in data science and classification (pp. 585–592). Berlin: Springer.CrossRefGoogle Scholar
  5. Frigui, H., Hwang, C., & Rhee, F. (2007). Clustering and aggregation of relational data with applications to image database categorization. Pattern Recognition, 40, 3053–3068.CrossRefzbMATHGoogle Scholar
  6. Hathaway, R. J., & Bezdek, J. C. (1994). Nerf c-means: Non-Euclidean relational fuzzy clustering. Pattern Recognition, 27(3), 429–437.CrossRefGoogle Scholar
  7. Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computer Survey, 31(3), 264–323.CrossRefGoogle Scholar
  8. Jeanty, P., Delsaut, M., Trovalet, L., Ralambondrainy, H., Lan-sun-luk, J. D., Bessafi, M., Charton, P., & Chabriat, J. P. (2013). Clustering daily solar radiation from reunion island using data analysis methods. In International Conference on Renewable Energies and Power Quality. Spain: Bilbao.Google Scholar
  9. Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data. New York: Wiley.CrossRefGoogle Scholar
  10. Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18.Google Scholar
  11. Milligan, G. W., & Cooper, M. C. (1996). Clustering validation: Results and implications for applied analysis. In P. Arabie, L. Hubert, & G. De Soete (Eds.), Clustering and classification. (pp. 341–375). Singapore: World Scientific.CrossRefGoogle Scholar
  12. Muselli, M., Poggi, P., Notton, G., & Louche, A. (2000). Classification of typical meteorological days from global irradiation records and comparison between two mediterranean coastal sites in corsica island. Energy Conversion Management, 41, 1043–1063.CrossRefGoogle Scholar
  13. Soudhan, T., Emilion, R., & Calif, R. (2009). Classification of daily solar radiation distributions using a mixture of Dirichlet distributions. Solar Energy, 83, 1056–1063.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Miloud Bessafi
    • 1
  • Franciscos de A.T. de Carvalho
    • 2
  • Philippe Charton
    • 3
  • Mathieu Delsaut
    • 1
  • Thierry Despeyroux
    • 4
  • Patrick Jeanty
    • 1
  • Jean Daniel Lan-Sun-Luk
    • 1
  • Yves Lechevallier
    • 4
  • Henri Ralambondrainy
    • 3
  • Lionel Trovalet
    • 1
  1. 1.LE²P, Université de la RéunionRéunionFrance
  2. 2.CIn/UFPERecife-PEBrazil
  3. 3.LIM, Université de la RéunionRéunionFrance
  4. 4.INRIA, Paris-RocquencourtLe Chesnay cedexFrance

Personalised recommendations