Advertisement

What Is in a Like? Preference Aggregation on the Social Web

  • Adrian Giurca
  • Daniel Baier
  • Ingo Schmitt
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

The Social Web is dominated by rating systems such as the ones of Facebook (only “Like”), YouTube (both “Like” and “Dislike”), or the Amazon product review 5-star rating. All these systems try to answer on How should a social application pool the preferences of different agents so as to best reflect the wishes of the population as a whole? The main framework is the theory of social choice (Arrow, Social choice and individual values, Wiley, New York, 1963; Fishburn, The theory of social choice, Princeton University Press, Princeton, 1973) i.e., agents have preferences, and do not try to camouflage them in order to manipulate the outcome to their personal advantage (moreover, manipulation is quite difficult when interactions take place at the Web scale). Our approach uses a combination between the Like/Dislike system and a 5-star satisfaction system to achieve local preference ranks and a global partial ranking on the outcomes set. Moreover, the actual data collection can support other preference learning techniques such as the ones introduced by Baier and Gaul (J. Econ. 89:365–392, 1999), Cohen et al. (J. Artif. Intel. Res. 10:213–270, 1999), Fürnkranz and Hüllermeier (Künstliche Intelligenz 19(1):60–61, 2005), and Hüllermeier et al. (Artif. Intel. 172(16–17):1897–1916, 2008).

Keywords

Social Choice Vote System Conjoint Analysis Preference Score Weighted Preference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arrow, K. J. (1963). Social choice and individual values (2nd ed.). New York: Wiley.Google Scholar
  2. Baier, D., & Gaul, W. (1999). Optimal product positioning based on paired comparison data. Journal of Econometrics, 89, 365–392.CrossRefzbMATHGoogle Scholar
  3. Boldi, P., Bonchi, F., Castillo, C., & Vigna, S. (2009, 2–6 November). Voting in social networks. In Proc. of The 18th ACM Conference on Information and Knowledge Management (pp. 777–786), Hong Kong.Google Scholar
  4. Brusch, M., & Baier, D. (2005). Vergleich von persönlich-computergestützten und webbasierten Erhebungsformen in der Marktforschung am Beispiel der Conjointanalyse. Forum der Forschung 18/2005: 161-166, BTU Cottbus, Eigenverlag, ISSN-Nr.: 0947 - 6989.Google Scholar
  5. Brusch, M., Baier, D., & Treppa, A. (2002). Conjoint analysis and stimulus presentation. A comparison of alternative methods. In K. Jajuga, A. Sokolowski, & H. H. Bock (Eds.), Classification, clustering, and analysis (pp. 203–210). Berlin: Springer.CrossRefGoogle Scholar
  6. CMO Council (2011). Variance in the Social Brand Experience, http://www.cmocouncil.org/images/uploads/216.pdf.
  7. Cohen, W., Schapire, R. E., & Singer, Y. (1999). Learning to order things. Journal of Artificial Intelligence Research, 10, 213–270.MathSciNetGoogle Scholar
  8. Fishburn, P. C. (1973). The theory of social choice. Princeton: Princeton University Press.zbMATHGoogle Scholar
  9. Fürnkranz, J., & Hüllermeier, E. (2005). Preference learning. Künstliche Intelligenz, 19(1), 60–61.Google Scholar
  10. Giurca, A., Schmitt, I., & Baier, D. (2012a). Adaptive conjoint analysis. Training data: Knowledge or beliefs? A logical perspective of preferences as beliefs. In Proceedings of the Federated Conference on Computer Science and Information Systems (pp. 1127–1133), ISBN 978-83-60810-51-4.Google Scholar
  11. Giurca, A., Schmitt, I., & Baier, D. (2012b, 28 August). Can adaptive conjoint analysis perform in a preference logic framework? In G. Nalepa, J. Canadas, & J. Baumeister (Eds.), Proceedings of 8th Workshop on Knowledge Engineering and Software Engineering (KESE8), at the 20th Biennial European Conference on Artificial Intelligence (ECAI 2012) (Vol. 949), Montpellier, CEUR-WS.Google Scholar
  12. Göritz, A. S.,Batinic, B., & Moser, K. (2000). Online marktforschung. In W. Scheffler, K.-I. Voigt (Eds.), Entwicklungsperspektiven im Electronic Business. Grundlagen – Strukturen – Anwendungsfelder (pp. 187–204). Wiesbaden: Gabler.CrossRefGoogle Scholar
  13. Görts, T., & Behringer, T. (2003). Online-Conjoint – Chancen und Grenzen: Ein Fallbeispiel aus dem Telekommunikationsmarkt. In A. Theobald, M. Dreyer, & T. Starsetzki (Eds.), Online-Marktforschung. Theoretische Grundlagen und praktische Erfahrungen (pp. 283–296). Wiesbaden: Gabler.Google Scholar
  14. Hüllermeier, E., Fürnkranz, J., Cheng, W., & Brinker, K. (2008). Label ranking by learning pairwise preferences. Artificial Intelligence, 172(16–17), 1897–1916.CrossRefzbMATHMathSciNetGoogle Scholar
  15. Littlestone, N., & Warmuth, M. (1994). The weighted majority algorithm. Information and Computation, 108(2), 212–261.CrossRefzbMATHMathSciNetGoogle Scholar
  16. Manning, C., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  17. Matsuo, Y., & Yamamoto, H. (2009, 20–24 April). Community gravity: Measuring bidirectional effects by trust and rating on online social networks. In Proceedings of WWW 2009, Madrid. ACM available at http://www2009.org/proceedings/pdf/p751.pdf.
  18. Mika, P. (2005). Flink: Semantic web technology for the extraction and analysis of social networks. Journal of Web Semantics, 3, 2–3.CrossRefGoogle Scholar
  19. Rese, A., Schreiber, S., & Baier, D. (2014). Technology acceptance modeling of augmented reality at the point of sale: Can surveys be replaced by an analysis of online reviews? Journal of Retailing and Consumer Services, 21, 869–876.CrossRefGoogle Scholar
  20. Schmitt, I. (2005). Ähnlichkeitssuche in Multimedia-Datenbanken-Retrieval, Suchalgorithmen und Anfragebehandlung. München: Oldenbourg Wissenschaftsverlag GmbH, ISBN 3-486-57907-X.Google Scholar
  21. Symeonidis, P., Tiakas, E., & Manolopoulos, Y. (2011, 23–27 October). Product recommendation and rating prediction based on multi-modal social networks. In In Proceedings of ACM Recommender Systems 2011, RecSys’11, Chicago, IL.Google Scholar
  22. Theobald, A. (2000). Das Word Wide Web als Befragungsinstrument. Wiesbaden: DUV.CrossRefGoogle Scholar
  23. Thomas, J. P., & McFayden, R. G. (1995). The confidence heuristic: A game-theoretic analysis. Journal of Economic Psychology, 16, 97–113.CrossRefGoogle Scholar
  24. Walter, F. E., Battiston, S., & Schweitzer, F. (2008, February). A model of a trust-based recommendation system on a social network. Autonomous Agents and Multi-Agent Systems, 16(1), 57–74.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Brandenburgische Technische Universität CottbusCottbusGermany
  2. 2.BinaryparkCottbusGermany

Personalised recommendations