A FOIL-Like Method for Learning under Incompleteness and Vagueness

  • Francesca A. Lisi
  • Umberto Straccia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8812)


Incompleteness and vagueness are inherent properties of knowledge in several real world domains and are particularly pervading in those domains where entities could be better described in natural language. In order to deal with incomplete and vague structured knowledge, several fuzzy extensions of Description Logics (DLs) have been proposed in the literature. In this paper, we present a novel Foil-like method for inducing fuzzy DL inclusion axioms from crisp DL knowledge bases and discuss the results obtained on a real-world case study in the tourism application domain also in comparison with related works.


Description Logic Target Concept Atomic Concept Closed World Assumption Refinement Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. J. Artif. Intell. Res. 36, 1–69 (2009)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory Implementation and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)Google Scholar
  3. 3.
    Baader, F., Hanschke, P.: A scheme for integrating concrete domains into concept languages. In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of the 12th International Joint Conference on Artificial Intelligence, pp. 452–457. Morgan Kaufmann (1991)Google Scholar
  4. 4.
    Bobillo, F., Straccia, U.: fuzzyDL: An expressive fuzzy description logic reasoner. In: IEEE International Conference on Fuzzy Systems, pp. 923–930. IEEE (2008)Google Scholar
  5. 5.
    Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artif. Intell. 82(1–2), 353–367 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cerami, M., Straccia, U.: On the (un)decidability of fuzzy description logics under Łukasiewicz t-norm. Inf. Sci. 227, 1–21 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Drobics, M., Bodenhofer, U., Klement, E.P.: FS-FOIL: an inductive learning method for extracting interpretable fuzzy descriptions. Int. J. Approximate Reasoning 32(2–3), 131–152 (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: a clarification. Ann. Math. Artif. Intell. 32(1–4), 35–66 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  10. 10.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  11. 11.
    Iglesias, J., Lehmann, J.: Towards integrating fuzzy logic capabilities into an ontology-based inductive logic programming framework. In: Proceedings of the 11th International Conference on Intelligent Systems Design and Applications. IEEE Press (2011)Google Scholar
  12. 12.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall Inc., Englewood Cliffs (1995)zbMATHGoogle Scholar
  13. 13.
    Konstantopoulos, S., Charalambidis, A.: Formulating description logic learning as an inductive logic programming task. In: Proceedings of the 19th IEEE International Conference on Fuzzy Systems, pp. 1–7. IEEE Press (2010)Google Scholar
  14. 14.
    Lehmann, J.: DL-Learner: learning concepts in description logics. J. Mach. Learn. Res. 10, 2639–2642 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. J. Web Seman. 9(1), 71–81 (2011)CrossRefGoogle Scholar
  16. 16.
    Lehmann, J., Haase, C.: Ideal Downward Refinement in the \({\mathcal{EL}}\) Description Logic. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 73–87. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  17. 17.
    Lisi, F.A., Straccia, U.: A logic-based computational method for the automated induction of fuzzy ontology axioms. Fundamenta Informaticae 124(4), 503–519 (2013)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Motik, B., Rosati, R.: A faithful integration of description logics with logic programming. In: Veloso, M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 477–482 (2007)Google Scholar
  19. 19.
    Quinlan, J.R.: Learning logical definitions from relations. Mach. Learn. 5, 239–266 (1990)Google Scholar
  20. 20.
    Reiter, R.: Equality and domain closure in first order databases. J. ACM 27, 235–249 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Schmidt-Schauss, M., Smolka, G.: Attributive concept descriptions with complements. Artif. Intell. 48(1), 1–26 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Serrurier, M., Prade, H.: Improving expressivity of inductive logic programming by learning different kinds of fuzzy rules. Soft. Comput. 11(5), 459–466 (2007)CrossRefzbMATHGoogle Scholar
  23. 23.
    Shibata, D., Inuzuka, N., Kato, S., Matsui, T., Itoh, H.: An induction algorithm based on fuzzy logic programming. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 268–274. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  24. 24.
    Straccia, U.: Reasoning within fuzzy description logics. J. Artif. Intell. Res. 14, 137–166 (2001)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Straccia, U.: Description logics with fuzzy concrete domains. In: Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence, pp. 559–567. AUAI Press (2005)Google Scholar
  26. 26.
    Straccia, U.: Foundations of Fuzzy Logic and Semantic Web Languages. CRC Studies in Informatics Series. Chapman & Hall, London (2013)Google Scholar
  27. 27.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità degli Studi di Bari “Aldo Moro”BariItaly
  2. 2.ISTI - CNRPisaItaly

Personalised recommendations