Learning Through Hypothesis Refinement Using Answer Set Programming

  • Duangtida AthakraviEmail author
  • Domenico Corapi
  • Krysia Broda
  • Alessandra Russo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8812)


Recent work has shown how a meta-level approach to inductive logic programming, which uses a semantic-preserving transformation of a learning task into an abductive reasoning problem, can address a large class of multi-predicate, nonmonotonic learning in a sound and complete manner. An Answer Set Programming (ASP) implementation, called ASPAL, has been proposed that uses ASP fixed point computation to solve a learning task, thus delegating the search to the ASP solver. Although this meta-level approach has been shown to be very general and flexible, the scalability of its ASP implementation is constrained by the grounding of the meta-theory. In this paper we build upon these results and propose a new meta-level learning approach that overcomes the scalability problem of ASPAL by breaking the learning process up into small manageable steps and using theory revision over the meta-level representation of the hypothesis space to improve the hypothesis computed at each step. We empirically evaluate the computational gain with respect to ASPAL using two different answer set solvers.


Answer Set Programming Hypothesis refinement 



This work is partially funded by the 7th Framework EU-FET project 600792 ALLOW Ensembles and the EPSRC project P44745.


  1. 1.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bratko, I.: Refining complete hypotheses in ILP. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 44–55. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  3. 3.
    Corapi, D.: Nonmonotonic inductive logic programming as abductive search. Ph.D. thesis, Imperial College London (2011)Google Scholar
  4. 4.
    Corapi, D., Russo, A., Lupu, E.: Inductive logic programming as abductive search. In: Hermenegildo, M., Schaub, T. (eds.) Technical Communications of the 26th International Conference on Logic Programming (2010)Google Scholar
  5. 5.
    Corapi, D., Russo, A., Lupu, E.: Inductive logic programming in answer set programming. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds.) ILP 2011. LNCS, vol. 7207, pp. 91–97. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  6. 6.
    Corapi, D., Russo, A., Vos, M.D., Padget, J.A., Satoh, K.: Normative design using inductive learning. TPLP 11(4–5), 783–799 (2011)zbMATHGoogle Scholar
  7. 7.
    Dimopoulos, Y., Kakas, A.: Learning non-monotonic logic programs: learning exceptions. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp. 122–137. Springer, Heidelberg (1995) Google Scholar
  8. 8.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.: Potassco: the Potsdam answer set solving collection. AI Commun. 24(2), 105–124 (2011)MathSciNetGoogle Scholar
  9. 9.
    Katzouris, N., Artikis, A., Paliouras, G.: Incremental learning of event definitions with inductive logic programming. CoRR abs/1402.5988 (2014)Google Scholar
  10. 10.
    Kimber, T.: Learning definite and normal logic programs by induction on failure. Ph.D. thesis, Imperial College London (2012)Google Scholar
  11. 11.
    Kimber, T., Broda, K., Russo, A.: Induction on failure: learning connected horn theories. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753, pp. 169–181. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  12. 12.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic 7(3), 499–562 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lloyd, J.: Foundations of logic programming. Springer, New York (1984)CrossRefzbMATHGoogle Scholar
  14. 14.
    Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods. J. Logic Program. 19–20(20), 629–679 (1994)CrossRefGoogle Scholar
  15. 15.
    Muggleton, S.H., Santos, J.C.A., Tamaddoni-Nezhad, A.: TopLog: ILP using a logic program declarative bias. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 687–692. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  16. 16.
    Muggleton, S.H., Lin, D.: Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited. In: IJCAI (2013)Google Scholar
  17. 17.
    Ray, O.: Nonmonotonic abductive inductive learning. J. Appl. Logic 7(3), 329–340 (2008)CrossRefGoogle Scholar
  18. 18.
    Sakama, C.: Nonmonotonic inductive logic programming. In: Eiter, T., Faber, W., Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 62–80. Springer, Heidelberg (2001) Google Scholar
  19. 19.
    Sakama, C.: Induction from answer sets in nonmonotonic logic programs. ACM Trans. Comput. Logic 6(2), 203–231 (2005)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sakama, C., Inoue, K.: Brave induction: a logical framework for learning from incomplete information. Mach. Learn. 67(1), 3–35 (2009)CrossRefGoogle Scholar
  21. 21.
    Stahl, I.: Predicate invention in inductive logic programming. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming, pp. 34–47. IOS Press, Amsterdam (1996)Google Scholar
  22. 22.
    Wrobel, S.: First order theory refinement. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming, pp. 14–33. IOS Press, Amsterdam (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Duangtida Athakravi
    • 1
    Email author
  • Domenico Corapi
    • 1
  • Krysia Broda
    • 1
  • Alessandra Russo
    • 1
  1. 1.Imperial College LondonLondonUK

Personalised recommendations