Advertisement

A Real-Time Scheduling Framework Based on Multi-core Dynamic Partitioning in Virtualized Environment

  • Song Wu
  • Like Zhou
  • Danqing Fu
  • Hai Jin
  • Xuanhua Shi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8707)

Abstract

With the prevalence of virtualization and cloud computing, many real-time applications are running in virtualized cloud environments. However, their performance cannot be guaranteed because current hypervisors’ CPU schedulers aim to share CPU resources fairly and improve system throughput. They do not consider real-time constraints of these applications, which result in frequent deadline misses. In this paper, we present a real-time scheduling framework in virtualized environment. In the framework, we propose a mechanism called multi-core dynamic partitioning to divide physical CPUs (PCPUs) into two pools dynamically according to the scheduling parameters of real-time virtual machines (RT-VMs). We apply different schedulers to these pools to schedule RT-VMs and non-RT-VMs respectively. Besides, we design a global earliest deadline first (vGEDF) scheduler to schedule RT-VMs. We implement a prototype in the Xen hypervisor and conduct experiments to verify its effectiveness.

Keywords

Virtualization Real-time scheduling Multi-core Cloud computing 

References

  1. 1.
    Amazon’s Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/
  2. 2.
  3. 3.
  4. 4.
    Lookbusy - a synthetic load generator, http://www.devin.com/lookbusy/
  5. 5.
    Real-Time Linux Wiki, https://rt.wiki.kernel.org
  6. 6.
  7. 7.
    Baker, T.P.: An analysis of edf schedulability on a multiprocessor. IEEE Trans. Parallel Distrib. Syst. 16(8), 760–768 (2005)CrossRefGoogle Scholar
  8. 8.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proc. SOSP 2003, pp. 164–177 (2003)Google Scholar
  9. 9.
    Cherkasova, L., Gupta, D., Vahdat, A.: Comparison of the three cpu schedulers in Xen. SIGMETRICS Perform. Eval. Rev. 35(2), 42 (2007)CrossRefGoogle Scholar
  10. 10.
    Hu, Y., Long, X., Zhang, J., He, J., Xia, L.: I/O scheduling model of virtual machine based on multi-core dynamic partitioning. In: Proc. HPDC 2010, pp. 142–154 (2010)Google Scholar
  11. 11.
    Hwang, J., Wood, T.: Adaptive dynamic priority scheduling for virtual desktop infrastructures. In: Proc. IWQoS 2012 (2012)Google Scholar
  12. 12.
    Kim, H., Jeong, J., Hwang, J., Lee, J., Maeng, S.: Scheduler support for video-oriented multimedia on client-side virtualization. In: Proc. MMsys 2012, pp. 65–76 (2012)Google Scholar
  13. 13.
    Lee, M., Krishnakumar, A.S., Krishnan, P., Singh, N., Yajnik, S.: Supporting soft real-time tasks in the Xen hypervisor. In: Proc. VEE 2010, pp. 97–108 (2010)Google Scholar
  14. 14.
    Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of the ACM (JACM) 20(1), 46–61 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Rix, A.W., Beerends, J.G., Hollier, M.P., Hekstra, A.P.: Perceptual evaluation of speech quality (pesq)-a new method for speech quality assessment of telephone networks and codecs. In: Proc. ICASSP 2001, vol. 2, pp. 749–752 (2001)Google Scholar
  16. 16.
    Xi, S., Wilson, J., Lu, C., Gill, C.: RT-Xen: Towards real-time hypervisor scheduling in Xen. In: Proc. EMSOFT 2011, pp. 39–48 (2011)Google Scholar
  17. 17.
    Zhou, L., Wu, S., Sun, H., Jin, H., Shi, X.: Supporting parallel soft real-time applications in virtualized environment. In: Proc. HPDC 2013, pp. 117–118 (2013)Google Scholar
  18. 18.
    Zhou, L., Wu, S., Sun, H., Jin, H., Shi, X.: Virtual machine scheduling for parallel soft real-time applications. In: Proc. MASCOTS 2013, pp. 525–534 (2013)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Song Wu
    • 1
  • Like Zhou
    • 1
  • Danqing Fu
    • 1
  • Hai Jin
    • 1
  • Xuanhua Shi
    • 1
  1. 1.Services Computing Technology and System Lab, Cluster and Grid Computing Lab, School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations